Metamath Proof Explorer


Theorem ovncvr2

Description: B and T are the left and right side of a cover of A . This cover is made of n-dimensional half-open intervals and approximates the n-dimensional Lebesgue outer volume of A . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses ovncvr2.x φ X Fin
ovncvr2.a φ A X
ovncvr2.e φ E +
ovncvr2.c C = a 𝒫 X l 2 X | a j k X . l j k
ovncvr2.l L = h 2 X k X vol . h k
ovncvr2.d D = a 𝒫 X r + i C a | sum^ j L i j voln* X a + 𝑒 r
ovncvr2.i φ I D A E
ovncvr2.b B = j k X 1 st I j k
ovncvr2.t T = j k X 2 nd I j k
Assertion ovncvr2 φ B : X T : X A j k X B j k T j k sum^ j k X vol B j k T j k voln* X A + 𝑒 E

Proof

Step Hyp Ref Expression
1 ovncvr2.x φ X Fin
2 ovncvr2.a φ A X
3 ovncvr2.e φ E +
4 ovncvr2.c C = a 𝒫 X l 2 X | a j k X . l j k
5 ovncvr2.l L = h 2 X k X vol . h k
6 ovncvr2.d D = a 𝒫 X r + i C a | sum^ j L i j voln* X a + 𝑒 r
7 ovncvr2.i φ I D A E
8 ovncvr2.b B = j k X 1 st I j k
9 ovncvr2.t T = j k X 2 nd I j k
10 sseq1 a = A a j k X . l j k A j k X . l j k
11 10 rabbidv a = A l 2 X | a j k X . l j k = l 2 X | A j k X . l j k
12 ovexd φ X V
13 12 2 ssexd φ A V
14 elpwg A V A 𝒫 X A X
15 13 14 syl φ A 𝒫 X A X
16 2 15 mpbird φ A 𝒫 X
17 ovex 2 X V
18 17 rabex l 2 X | A j k X . l j k V
19 18 a1i φ l 2 X | A j k X . l j k V
20 4 11 16 19 fvmptd3 φ C A = l 2 X | A j k X . l j k
21 ssrab2 l 2 X | A j k X . l j k 2 X
22 21 a1i φ l 2 X | A j k X . l j k 2 X
23 20 22 eqsstrd φ C A 2 X
24 fveq2 a = A C a = C A
25 24 eleq2d a = A i C a i C A
26 fveq2 a = A voln* X a = voln* X A
27 26 oveq1d a = A voln* X a + 𝑒 r = voln* X A + 𝑒 r
28 27 breq2d a = A sum^ j L i j voln* X a + 𝑒 r sum^ j L i j voln* X A + 𝑒 r
29 25 28 anbi12d a = A i C a sum^ j L i j voln* X a + 𝑒 r i C A sum^ j L i j voln* X A + 𝑒 r
30 29 rabbidva2 a = A i C a | sum^ j L i j voln* X a + 𝑒 r = i C A | sum^ j L i j voln* X A + 𝑒 r
31 30 mpteq2dv a = A r + i C a | sum^ j L i j voln* X a + 𝑒 r = r + i C A | sum^ j L i j voln* X A + 𝑒 r
32 rpex + V
33 32 mptex r + i C A | sum^ j L i j voln* X A + 𝑒 r V
34 33 a1i φ r + i C A | sum^ j L i j voln* X A + 𝑒 r V
35 6 31 16 34 fvmptd3 φ D A = r + i C A | sum^ j L i j voln* X A + 𝑒 r
36 oveq2 r = E voln* X A + 𝑒 r = voln* X A + 𝑒 E
37 36 breq2d r = E sum^ j L i j voln* X A + 𝑒 r sum^ j L i j voln* X A + 𝑒 E
38 37 rabbidv r = E i C A | sum^ j L i j voln* X A + 𝑒 r = i C A | sum^ j L i j voln* X A + 𝑒 E
39 38 adantl φ r = E i C A | sum^ j L i j voln* X A + 𝑒 r = i C A | sum^ j L i j voln* X A + 𝑒 E
40 fvex C A V
41 40 rabex i C A | sum^ j L i j voln* X A + 𝑒 E V
42 41 a1i φ i C A | sum^ j L i j voln* X A + 𝑒 E V
43 35 39 3 42 fvmptd φ D A E = i C A | sum^ j L i j voln* X A + 𝑒 E
44 7 43 eleqtrd φ I i C A | sum^ j L i j voln* X A + 𝑒 E
45 fveq1 i = I i j = I j
46 45 fveq2d i = I L i j = L I j
47 46 mpteq2dv i = I j L i j = j L I j
48 47 fveq2d i = I sum^ j L i j = sum^ j L I j
49 48 breq1d i = I sum^ j L i j voln* X A + 𝑒 E sum^ j L I j voln* X A + 𝑒 E
50 49 elrab I i C A | sum^ j L i j voln* X A + 𝑒 E I C A sum^ j L I j voln* X A + 𝑒 E
51 44 50 sylib φ I C A sum^ j L I j voln* X A + 𝑒 E
52 51 simpld φ I C A
53 23 52 sseldd φ I 2 X
54 elmapi I 2 X I : 2 X
55 53 54 syl φ I : 2 X
56 55 adantr φ j I : 2 X
57 simpr φ j j
58 56 57 ffvelrnd φ j I j 2 X
59 elmapi I j 2 X I j : X 2
60 58 59 syl φ j I j : X 2
61 60 ffvelrnda φ j k X I j k 2
62 xp1st I j k 2 1 st I j k
63 61 62 syl φ j k X 1 st I j k
64 63 fmpttd φ j k X 1 st I j k : X
65 reex V
66 65 a1i φ V
67 elmapg V X Fin k X 1 st I j k X k X 1 st I j k : X
68 66 1 67 syl2anc φ k X 1 st I j k X k X 1 st I j k : X
69 68 adantr φ j k X 1 st I j k X k X 1 st I j k : X
70 64 69 mpbird φ j k X 1 st I j k X
71 70 fmpttd φ j k X 1 st I j k : X
72 8 a1i φ B = j k X 1 st I j k
73 72 feq1d φ B : X j k X 1 st I j k : X
74 71 73 mpbird φ B : X
75 xp2nd I j k 2 2 nd I j k
76 61 75 syl φ j k X 2 nd I j k
77 76 fmpttd φ j k X 2 nd I j k : X
78 elmapg V X Fin k X 2 nd I j k X k X 2 nd I j k : X
79 66 1 78 syl2anc φ k X 2 nd I j k X k X 2 nd I j k : X
80 79 adantr φ j k X 2 nd I j k X k X 2 nd I j k : X
81 77 80 mpbird φ j k X 2 nd I j k X
82 81 fmpttd φ j k X 2 nd I j k : X
83 9 a1i φ T = j k X 2 nd I j k
84 83 feq1d φ T : X j k X 2 nd I j k : X
85 82 84 mpbird φ T : X
86 74 85 jca φ B : X T : X
87 52 20 eleqtrd φ I l 2 X | A j k X . l j k
88 fveq1 l = I l j = I j
89 88 coeq2d l = I . l j = . I j
90 89 fveq1d l = I . l j k = . I j k
91 90 ixpeq2dv l = I k X . l j k = k X . I j k
92 91 adantr l = I j k X . l j k = k X . I j k
93 92 iuneq2dv l = I j k X . l j k = j k X . I j k
94 93 sseq2d l = I A j k X . l j k A j k X . I j k
95 94 elrab I l 2 X | A j k X . l j k I 2 X A j k X . I j k
96 87 95 sylib φ I 2 X A j k X . I j k
97 96 simprd φ A j k X . I j k
98 60 adantr φ j k X I j : X 2
99 simpr φ j k X k X
100 98 99 fvovco φ j k X . I j k = 1 st I j k 2 nd I j k
101 mptexg X Fin k X 1 st I j k V
102 1 101 syl φ k X 1 st I j k V
103 102 adantr φ j k X 1 st I j k V
104 72 103 fvmpt2d φ j B j = k X 1 st I j k
105 fvexd φ j k X 1 st I j k V
106 104 105 fvmpt2d φ j k X B j k = 1 st I j k
107 106 eqcomd φ j k X 1 st I j k = B j k
108 mptexg X Fin k X 2 nd I j k V
109 1 108 syl φ k X 2 nd I j k V
110 109 adantr φ j k X 2 nd I j k V
111 83 110 fvmpt2d φ j T j = k X 2 nd I j k
112 fvexd φ j k X 2 nd I j k V
113 111 112 fvmpt2d φ j k X T j k = 2 nd I j k
114 113 eqcomd φ j k X 2 nd I j k = T j k
115 107 114 oveq12d φ j k X 1 st I j k 2 nd I j k = B j k T j k
116 100 115 eqtrd φ j k X . I j k = B j k T j k
117 116 ixpeq2dva φ j k X . I j k = k X B j k T j k
118 117 iuneq2dv φ j k X . I j k = j k X B j k T j k
119 97 118 sseqtrd φ A j k X B j k T j k
120 5 a1i φ j L = h 2 X k X vol . h k
121 coeq2 h = I j . h = . I j
122 121 fveq1d h = I j . h k = . I j k
123 122 ad2antlr φ h = I j k X . h k = . I j k
124 123 adantllr φ j h = I j k X . h k = . I j k
125 100 adantlr φ j h = I j k X . I j k = 1 st I j k 2 nd I j k
126 115 adantlr φ j h = I j k X 1 st I j k 2 nd I j k = B j k T j k
127 124 125 126 3eqtrd φ j h = I j k X . h k = B j k T j k
128 127 fveq2d φ j h = I j k X vol . h k = vol B j k T j k
129 128 prodeq2dv φ j h = I j k X vol . h k = k X vol B j k T j k
130 1 adantr φ j X Fin
131 8 fvmpt2 j k X 1 st I j k V B j = k X 1 st I j k
132 57 103 131 syl2anc φ j B j = k X 1 st I j k
133 132 feq1d φ j B j : X k X 1 st I j k : X
134 64 133 mpbird φ j B j : X
135 134 adantr φ j k X B j : X
136 135 99 ffvelrnd φ j k X B j k
137 9 fvmpt2 j k X 2 nd I j k V T j = k X 2 nd I j k
138 57 110 137 syl2anc φ j T j = k X 2 nd I j k
139 138 feq1d φ j T j : X k X 2 nd I j k : X
140 77 139 mpbird φ j T j : X
141 140 adantr φ j k X T j : X
142 141 99 ffvelrnd φ j k X T j k
143 volicore B j k T j k vol B j k T j k
144 136 142 143 syl2anc φ j k X vol B j k T j k
145 130 144 fprodrecl φ j k X vol B j k T j k
146 120 129 58 145 fvmptd φ j L I j = k X vol B j k T j k
147 146 eqcomd φ j k X vol B j k T j k = L I j
148 147 mpteq2dva φ j k X vol B j k T j k = j L I j
149 148 fveq2d φ sum^ j k X vol B j k T j k = sum^ j L I j
150 51 simprd φ sum^ j L I j voln* X A + 𝑒 E
151 149 150 eqbrtrd φ sum^ j k X vol B j k T j k voln* X A + 𝑒 E
152 86 119 151 jca31 φ B : X T : X A j k X B j k T j k sum^ j k X vol B j k T j k voln* X A + 𝑒 E