Step |
Hyp |
Ref |
Expression |
1 |
|
ovncvr2.x |
|- ( ph -> X e. Fin ) |
2 |
|
ovncvr2.a |
|- ( ph -> A C_ ( RR ^m X ) ) |
3 |
|
ovncvr2.e |
|- ( ph -> E e. RR+ ) |
4 |
|
ovncvr2.c |
|- C = ( a e. ~P ( RR ^m X ) |-> { l e. ( ( ( RR X. RR ) ^m X ) ^m NN ) | a C_ U_ j e. NN X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) } ) |
5 |
|
ovncvr2.l |
|- L = ( h e. ( ( RR X. RR ) ^m X ) |-> prod_ k e. X ( vol ` ( ( [,) o. h ) ` k ) ) ) |
6 |
|
ovncvr2.d |
|- D = ( a e. ~P ( RR ^m X ) |-> ( r e. RR+ |-> { i e. ( C ` a ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` a ) +e r ) } ) ) |
7 |
|
ovncvr2.i |
|- ( ph -> I e. ( ( D ` A ) ` E ) ) |
8 |
|
ovncvr2.b |
|- B = ( j e. NN |-> ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) ) |
9 |
|
ovncvr2.t |
|- T = ( j e. NN |-> ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) ) |
10 |
|
sseq1 |
|- ( a = A -> ( a C_ U_ j e. NN X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) <-> A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) ) ) |
11 |
10
|
rabbidv |
|- ( a = A -> { l e. ( ( ( RR X. RR ) ^m X ) ^m NN ) | a C_ U_ j e. NN X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) } = { l e. ( ( ( RR X. RR ) ^m X ) ^m NN ) | A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) } ) |
12 |
|
ovexd |
|- ( ph -> ( RR ^m X ) e. _V ) |
13 |
12 2
|
ssexd |
|- ( ph -> A e. _V ) |
14 |
|
elpwg |
|- ( A e. _V -> ( A e. ~P ( RR ^m X ) <-> A C_ ( RR ^m X ) ) ) |
15 |
13 14
|
syl |
|- ( ph -> ( A e. ~P ( RR ^m X ) <-> A C_ ( RR ^m X ) ) ) |
16 |
2 15
|
mpbird |
|- ( ph -> A e. ~P ( RR ^m X ) ) |
17 |
|
ovex |
|- ( ( ( RR X. RR ) ^m X ) ^m NN ) e. _V |
18 |
17
|
rabex |
|- { l e. ( ( ( RR X. RR ) ^m X ) ^m NN ) | A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) } e. _V |
19 |
18
|
a1i |
|- ( ph -> { l e. ( ( ( RR X. RR ) ^m X ) ^m NN ) | A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) } e. _V ) |
20 |
4 11 16 19
|
fvmptd3 |
|- ( ph -> ( C ` A ) = { l e. ( ( ( RR X. RR ) ^m X ) ^m NN ) | A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) } ) |
21 |
|
ssrab2 |
|- { l e. ( ( ( RR X. RR ) ^m X ) ^m NN ) | A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) } C_ ( ( ( RR X. RR ) ^m X ) ^m NN ) |
22 |
21
|
a1i |
|- ( ph -> { l e. ( ( ( RR X. RR ) ^m X ) ^m NN ) | A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) } C_ ( ( ( RR X. RR ) ^m X ) ^m NN ) ) |
23 |
20 22
|
eqsstrd |
|- ( ph -> ( C ` A ) C_ ( ( ( RR X. RR ) ^m X ) ^m NN ) ) |
24 |
|
fveq2 |
|- ( a = A -> ( C ` a ) = ( C ` A ) ) |
25 |
24
|
eleq2d |
|- ( a = A -> ( i e. ( C ` a ) <-> i e. ( C ` A ) ) ) |
26 |
|
fveq2 |
|- ( a = A -> ( ( voln* ` X ) ` a ) = ( ( voln* ` X ) ` A ) ) |
27 |
26
|
oveq1d |
|- ( a = A -> ( ( ( voln* ` X ) ` a ) +e r ) = ( ( ( voln* ` X ) ` A ) +e r ) ) |
28 |
27
|
breq2d |
|- ( a = A -> ( ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` a ) +e r ) <-> ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e r ) ) ) |
29 |
25 28
|
anbi12d |
|- ( a = A -> ( ( i e. ( C ` a ) /\ ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` a ) +e r ) ) <-> ( i e. ( C ` A ) /\ ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e r ) ) ) ) |
30 |
29
|
rabbidva2 |
|- ( a = A -> { i e. ( C ` a ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` a ) +e r ) } = { i e. ( C ` A ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e r ) } ) |
31 |
30
|
mpteq2dv |
|- ( a = A -> ( r e. RR+ |-> { i e. ( C ` a ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` a ) +e r ) } ) = ( r e. RR+ |-> { i e. ( C ` A ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e r ) } ) ) |
32 |
|
rpex |
|- RR+ e. _V |
33 |
32
|
mptex |
|- ( r e. RR+ |-> { i e. ( C ` A ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e r ) } ) e. _V |
34 |
33
|
a1i |
|- ( ph -> ( r e. RR+ |-> { i e. ( C ` A ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e r ) } ) e. _V ) |
35 |
6 31 16 34
|
fvmptd3 |
|- ( ph -> ( D ` A ) = ( r e. RR+ |-> { i e. ( C ` A ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e r ) } ) ) |
36 |
|
oveq2 |
|- ( r = E -> ( ( ( voln* ` X ) ` A ) +e r ) = ( ( ( voln* ` X ) ` A ) +e E ) ) |
37 |
36
|
breq2d |
|- ( r = E -> ( ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e r ) <-> ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) ) ) |
38 |
37
|
rabbidv |
|- ( r = E -> { i e. ( C ` A ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e r ) } = { i e. ( C ` A ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) } ) |
39 |
38
|
adantl |
|- ( ( ph /\ r = E ) -> { i e. ( C ` A ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e r ) } = { i e. ( C ` A ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) } ) |
40 |
|
fvex |
|- ( C ` A ) e. _V |
41 |
40
|
rabex |
|- { i e. ( C ` A ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) } e. _V |
42 |
41
|
a1i |
|- ( ph -> { i e. ( C ` A ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) } e. _V ) |
43 |
35 39 3 42
|
fvmptd |
|- ( ph -> ( ( D ` A ) ` E ) = { i e. ( C ` A ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) } ) |
44 |
7 43
|
eleqtrd |
|- ( ph -> I e. { i e. ( C ` A ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) } ) |
45 |
|
fveq1 |
|- ( i = I -> ( i ` j ) = ( I ` j ) ) |
46 |
45
|
fveq2d |
|- ( i = I -> ( L ` ( i ` j ) ) = ( L ` ( I ` j ) ) ) |
47 |
46
|
mpteq2dv |
|- ( i = I -> ( j e. NN |-> ( L ` ( i ` j ) ) ) = ( j e. NN |-> ( L ` ( I ` j ) ) ) ) |
48 |
47
|
fveq2d |
|- ( i = I -> ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) = ( sum^ ` ( j e. NN |-> ( L ` ( I ` j ) ) ) ) ) |
49 |
48
|
breq1d |
|- ( i = I -> ( ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) <-> ( sum^ ` ( j e. NN |-> ( L ` ( I ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) ) ) |
50 |
49
|
elrab |
|- ( I e. { i e. ( C ` A ) | ( sum^ ` ( j e. NN |-> ( L ` ( i ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) } <-> ( I e. ( C ` A ) /\ ( sum^ ` ( j e. NN |-> ( L ` ( I ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) ) ) |
51 |
44 50
|
sylib |
|- ( ph -> ( I e. ( C ` A ) /\ ( sum^ ` ( j e. NN |-> ( L ` ( I ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) ) ) |
52 |
51
|
simpld |
|- ( ph -> I e. ( C ` A ) ) |
53 |
23 52
|
sseldd |
|- ( ph -> I e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ) |
54 |
|
elmapi |
|- ( I e. ( ( ( RR X. RR ) ^m X ) ^m NN ) -> I : NN --> ( ( RR X. RR ) ^m X ) ) |
55 |
53 54
|
syl |
|- ( ph -> I : NN --> ( ( RR X. RR ) ^m X ) ) |
56 |
55
|
adantr |
|- ( ( ph /\ j e. NN ) -> I : NN --> ( ( RR X. RR ) ^m X ) ) |
57 |
|
simpr |
|- ( ( ph /\ j e. NN ) -> j e. NN ) |
58 |
56 57
|
ffvelrnd |
|- ( ( ph /\ j e. NN ) -> ( I ` j ) e. ( ( RR X. RR ) ^m X ) ) |
59 |
|
elmapi |
|- ( ( I ` j ) e. ( ( RR X. RR ) ^m X ) -> ( I ` j ) : X --> ( RR X. RR ) ) |
60 |
58 59
|
syl |
|- ( ( ph /\ j e. NN ) -> ( I ` j ) : X --> ( RR X. RR ) ) |
61 |
60
|
ffvelrnda |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( ( I ` j ) ` k ) e. ( RR X. RR ) ) |
62 |
|
xp1st |
|- ( ( ( I ` j ) ` k ) e. ( RR X. RR ) -> ( 1st ` ( ( I ` j ) ` k ) ) e. RR ) |
63 |
61 62
|
syl |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( 1st ` ( ( I ` j ) ` k ) ) e. RR ) |
64 |
63
|
fmpttd |
|- ( ( ph /\ j e. NN ) -> ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) : X --> RR ) |
65 |
|
reex |
|- RR e. _V |
66 |
65
|
a1i |
|- ( ph -> RR e. _V ) |
67 |
|
elmapg |
|- ( ( RR e. _V /\ X e. Fin ) -> ( ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) e. ( RR ^m X ) <-> ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) : X --> RR ) ) |
68 |
66 1 67
|
syl2anc |
|- ( ph -> ( ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) e. ( RR ^m X ) <-> ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) : X --> RR ) ) |
69 |
68
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) e. ( RR ^m X ) <-> ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) : X --> RR ) ) |
70 |
64 69
|
mpbird |
|- ( ( ph /\ j e. NN ) -> ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) e. ( RR ^m X ) ) |
71 |
70
|
fmpttd |
|- ( ph -> ( j e. NN |-> ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) ) : NN --> ( RR ^m X ) ) |
72 |
8
|
a1i |
|- ( ph -> B = ( j e. NN |-> ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) ) ) |
73 |
72
|
feq1d |
|- ( ph -> ( B : NN --> ( RR ^m X ) <-> ( j e. NN |-> ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) ) : NN --> ( RR ^m X ) ) ) |
74 |
71 73
|
mpbird |
|- ( ph -> B : NN --> ( RR ^m X ) ) |
75 |
|
xp2nd |
|- ( ( ( I ` j ) ` k ) e. ( RR X. RR ) -> ( 2nd ` ( ( I ` j ) ` k ) ) e. RR ) |
76 |
61 75
|
syl |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( 2nd ` ( ( I ` j ) ` k ) ) e. RR ) |
77 |
76
|
fmpttd |
|- ( ( ph /\ j e. NN ) -> ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) : X --> RR ) |
78 |
|
elmapg |
|- ( ( RR e. _V /\ X e. Fin ) -> ( ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) e. ( RR ^m X ) <-> ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) : X --> RR ) ) |
79 |
66 1 78
|
syl2anc |
|- ( ph -> ( ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) e. ( RR ^m X ) <-> ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) : X --> RR ) ) |
80 |
79
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) e. ( RR ^m X ) <-> ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) : X --> RR ) ) |
81 |
77 80
|
mpbird |
|- ( ( ph /\ j e. NN ) -> ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) e. ( RR ^m X ) ) |
82 |
81
|
fmpttd |
|- ( ph -> ( j e. NN |-> ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) ) : NN --> ( RR ^m X ) ) |
83 |
9
|
a1i |
|- ( ph -> T = ( j e. NN |-> ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) ) ) |
84 |
83
|
feq1d |
|- ( ph -> ( T : NN --> ( RR ^m X ) <-> ( j e. NN |-> ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) ) : NN --> ( RR ^m X ) ) ) |
85 |
82 84
|
mpbird |
|- ( ph -> T : NN --> ( RR ^m X ) ) |
86 |
74 85
|
jca |
|- ( ph -> ( B : NN --> ( RR ^m X ) /\ T : NN --> ( RR ^m X ) ) ) |
87 |
52 20
|
eleqtrd |
|- ( ph -> I e. { l e. ( ( ( RR X. RR ) ^m X ) ^m NN ) | A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) } ) |
88 |
|
fveq1 |
|- ( l = I -> ( l ` j ) = ( I ` j ) ) |
89 |
88
|
coeq2d |
|- ( l = I -> ( [,) o. ( l ` j ) ) = ( [,) o. ( I ` j ) ) ) |
90 |
89
|
fveq1d |
|- ( l = I -> ( ( [,) o. ( l ` j ) ) ` k ) = ( ( [,) o. ( I ` j ) ) ` k ) ) |
91 |
90
|
ixpeq2dv |
|- ( l = I -> X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) = X_ k e. X ( ( [,) o. ( I ` j ) ) ` k ) ) |
92 |
91
|
adantr |
|- ( ( l = I /\ j e. NN ) -> X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) = X_ k e. X ( ( [,) o. ( I ` j ) ) ` k ) ) |
93 |
92
|
iuneq2dv |
|- ( l = I -> U_ j e. NN X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) = U_ j e. NN X_ k e. X ( ( [,) o. ( I ` j ) ) ` k ) ) |
94 |
93
|
sseq2d |
|- ( l = I -> ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) <-> A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
95 |
94
|
elrab |
|- ( I e. { l e. ( ( ( RR X. RR ) ^m X ) ^m NN ) | A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( l ` j ) ) ` k ) } <-> ( I e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
96 |
87 95
|
sylib |
|- ( ph -> ( I e. ( ( ( RR X. RR ) ^m X ) ^m NN ) /\ A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( I ` j ) ) ` k ) ) ) |
97 |
96
|
simprd |
|- ( ph -> A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( I ` j ) ) ` k ) ) |
98 |
60
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( I ` j ) : X --> ( RR X. RR ) ) |
99 |
|
simpr |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> k e. X ) |
100 |
98 99
|
fvovco |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( ( 1st ` ( ( I ` j ) ` k ) ) [,) ( 2nd ` ( ( I ` j ) ` k ) ) ) ) |
101 |
|
mptexg |
|- ( X e. Fin -> ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) e. _V ) |
102 |
1 101
|
syl |
|- ( ph -> ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) e. _V ) |
103 |
102
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) e. _V ) |
104 |
72 103
|
fvmpt2d |
|- ( ( ph /\ j e. NN ) -> ( B ` j ) = ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) ) |
105 |
|
fvexd |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( 1st ` ( ( I ` j ) ` k ) ) e. _V ) |
106 |
104 105
|
fvmpt2d |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( ( B ` j ) ` k ) = ( 1st ` ( ( I ` j ) ` k ) ) ) |
107 |
106
|
eqcomd |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( 1st ` ( ( I ` j ) ` k ) ) = ( ( B ` j ) ` k ) ) |
108 |
|
mptexg |
|- ( X e. Fin -> ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) e. _V ) |
109 |
1 108
|
syl |
|- ( ph -> ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) e. _V ) |
110 |
109
|
adantr |
|- ( ( ph /\ j e. NN ) -> ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) e. _V ) |
111 |
83 110
|
fvmpt2d |
|- ( ( ph /\ j e. NN ) -> ( T ` j ) = ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) ) |
112 |
|
fvexd |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( 2nd ` ( ( I ` j ) ` k ) ) e. _V ) |
113 |
111 112
|
fvmpt2d |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( ( T ` j ) ` k ) = ( 2nd ` ( ( I ` j ) ` k ) ) ) |
114 |
113
|
eqcomd |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( 2nd ` ( ( I ` j ) ` k ) ) = ( ( T ` j ) ` k ) ) |
115 |
107 114
|
oveq12d |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( ( 1st ` ( ( I ` j ) ` k ) ) [,) ( 2nd ` ( ( I ` j ) ` k ) ) ) = ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) |
116 |
100 115
|
eqtrd |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) |
117 |
116
|
ixpeq2dva |
|- ( ( ph /\ j e. NN ) -> X_ k e. X ( ( [,) o. ( I ` j ) ) ` k ) = X_ k e. X ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) |
118 |
117
|
iuneq2dv |
|- ( ph -> U_ j e. NN X_ k e. X ( ( [,) o. ( I ` j ) ) ` k ) = U_ j e. NN X_ k e. X ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) |
119 |
97 118
|
sseqtrd |
|- ( ph -> A C_ U_ j e. NN X_ k e. X ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) |
120 |
5
|
a1i |
|- ( ( ph /\ j e. NN ) -> L = ( h e. ( ( RR X. RR ) ^m X ) |-> prod_ k e. X ( vol ` ( ( [,) o. h ) ` k ) ) ) ) |
121 |
|
coeq2 |
|- ( h = ( I ` j ) -> ( [,) o. h ) = ( [,) o. ( I ` j ) ) ) |
122 |
121
|
fveq1d |
|- ( h = ( I ` j ) -> ( ( [,) o. h ) ` k ) = ( ( [,) o. ( I ` j ) ) ` k ) ) |
123 |
122
|
ad2antlr |
|- ( ( ( ph /\ h = ( I ` j ) ) /\ k e. X ) -> ( ( [,) o. h ) ` k ) = ( ( [,) o. ( I ` j ) ) ` k ) ) |
124 |
123
|
adantllr |
|- ( ( ( ( ph /\ j e. NN ) /\ h = ( I ` j ) ) /\ k e. X ) -> ( ( [,) o. h ) ` k ) = ( ( [,) o. ( I ` j ) ) ` k ) ) |
125 |
100
|
adantlr |
|- ( ( ( ( ph /\ j e. NN ) /\ h = ( I ` j ) ) /\ k e. X ) -> ( ( [,) o. ( I ` j ) ) ` k ) = ( ( 1st ` ( ( I ` j ) ` k ) ) [,) ( 2nd ` ( ( I ` j ) ` k ) ) ) ) |
126 |
115
|
adantlr |
|- ( ( ( ( ph /\ j e. NN ) /\ h = ( I ` j ) ) /\ k e. X ) -> ( ( 1st ` ( ( I ` j ) ` k ) ) [,) ( 2nd ` ( ( I ` j ) ` k ) ) ) = ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) |
127 |
124 125 126
|
3eqtrd |
|- ( ( ( ( ph /\ j e. NN ) /\ h = ( I ` j ) ) /\ k e. X ) -> ( ( [,) o. h ) ` k ) = ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) |
128 |
127
|
fveq2d |
|- ( ( ( ( ph /\ j e. NN ) /\ h = ( I ` j ) ) /\ k e. X ) -> ( vol ` ( ( [,) o. h ) ` k ) ) = ( vol ` ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) ) |
129 |
128
|
prodeq2dv |
|- ( ( ( ph /\ j e. NN ) /\ h = ( I ` j ) ) -> prod_ k e. X ( vol ` ( ( [,) o. h ) ` k ) ) = prod_ k e. X ( vol ` ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) ) |
130 |
1
|
adantr |
|- ( ( ph /\ j e. NN ) -> X e. Fin ) |
131 |
8
|
fvmpt2 |
|- ( ( j e. NN /\ ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) e. _V ) -> ( B ` j ) = ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) ) |
132 |
57 103 131
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( B ` j ) = ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) ) |
133 |
132
|
feq1d |
|- ( ( ph /\ j e. NN ) -> ( ( B ` j ) : X --> RR <-> ( k e. X |-> ( 1st ` ( ( I ` j ) ` k ) ) ) : X --> RR ) ) |
134 |
64 133
|
mpbird |
|- ( ( ph /\ j e. NN ) -> ( B ` j ) : X --> RR ) |
135 |
134
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( B ` j ) : X --> RR ) |
136 |
135 99
|
ffvelrnd |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( ( B ` j ) ` k ) e. RR ) |
137 |
9
|
fvmpt2 |
|- ( ( j e. NN /\ ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) e. _V ) -> ( T ` j ) = ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) ) |
138 |
57 110 137
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( T ` j ) = ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) ) |
139 |
138
|
feq1d |
|- ( ( ph /\ j e. NN ) -> ( ( T ` j ) : X --> RR <-> ( k e. X |-> ( 2nd ` ( ( I ` j ) ` k ) ) ) : X --> RR ) ) |
140 |
77 139
|
mpbird |
|- ( ( ph /\ j e. NN ) -> ( T ` j ) : X --> RR ) |
141 |
140
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( T ` j ) : X --> RR ) |
142 |
141 99
|
ffvelrnd |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( ( T ` j ) ` k ) e. RR ) |
143 |
|
volicore |
|- ( ( ( ( B ` j ) ` k ) e. RR /\ ( ( T ` j ) ` k ) e. RR ) -> ( vol ` ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) e. RR ) |
144 |
136 142 143
|
syl2anc |
|- ( ( ( ph /\ j e. NN ) /\ k e. X ) -> ( vol ` ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) e. RR ) |
145 |
130 144
|
fprodrecl |
|- ( ( ph /\ j e. NN ) -> prod_ k e. X ( vol ` ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) e. RR ) |
146 |
120 129 58 145
|
fvmptd |
|- ( ( ph /\ j e. NN ) -> ( L ` ( I ` j ) ) = prod_ k e. X ( vol ` ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) ) |
147 |
146
|
eqcomd |
|- ( ( ph /\ j e. NN ) -> prod_ k e. X ( vol ` ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) = ( L ` ( I ` j ) ) ) |
148 |
147
|
mpteq2dva |
|- ( ph -> ( j e. NN |-> prod_ k e. X ( vol ` ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) ) = ( j e. NN |-> ( L ` ( I ` j ) ) ) ) |
149 |
148
|
fveq2d |
|- ( ph -> ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) ) ) = ( sum^ ` ( j e. NN |-> ( L ` ( I ` j ) ) ) ) ) |
150 |
51
|
simprd |
|- ( ph -> ( sum^ ` ( j e. NN |-> ( L ` ( I ` j ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) ) |
151 |
149 150
|
eqbrtrd |
|- ( ph -> ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) ) |
152 |
86 119 151
|
jca31 |
|- ( ph -> ( ( ( B : NN --> ( RR ^m X ) /\ T : NN --> ( RR ^m X ) ) /\ A C_ U_ j e. NN X_ k e. X ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) /\ ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( ( B ` j ) ` k ) [,) ( ( T ` j ) ` k ) ) ) ) ) <_ ( ( ( voln* ` X ) ` A ) +e E ) ) ) |