Metamath Proof Explorer


Theorem ibladdnc

Description: Choice-free analogue of itgadd . A measurability hypothesis is necessitated by the loss of mbfadd ; for large classes of functions, such as continuous functions, it should be relatively easy to show. (Contributed by Brendan Leahy, 1-Nov-2017)

Ref Expression
Hypotheses ibladdnc.1 φxABV
ibladdnc.2 φxAB𝐿1
ibladdnc.3 φxACV
ibladdnc.4 φxAC𝐿1
ibladdnc.m φxAB+CMblFn
Assertion ibladdnc φxAB+C𝐿1

Proof

Step Hyp Ref Expression
1 ibladdnc.1 φxABV
2 ibladdnc.2 φxAB𝐿1
3 ibladdnc.3 φxACV
4 ibladdnc.4 φxAC𝐿1
5 ibladdnc.m φxAB+CMblFn
6 iblmbf xAB𝐿1xABMblFn
7 2 6 syl φxABMblFn
8 7 1 mbfmptcl φxAB
9 8 recld φxAB
10 iblmbf xAC𝐿1xACMblFn
11 4 10 syl φxACMblFn
12 11 3 mbfmptcl φxAC
13 12 recld φxAC
14 8 12 readdd φxAB+C=B+C
15 8 ismbfcn2 φxABMblFnxABMblFnxABMblFn
16 7 15 mpbid φxABMblFnxABMblFn
17 16 simpld φxABMblFn
18 eqid 2xifxA0BB0=2xifxA0BB0
19 eqid 2xifxA0BB0=2xifxA0BB0
20 eqid 2xifxA0BB0=2xifxA0BB0
21 eqid 2xifxA0BB0=2xifxA0BB0
22 18 19 20 21 1 iblcnlem φxAB𝐿1xABMblFn2xifxA0BB02xifxA0BB02xifxA0BB02xifxA0BB0
23 2 22 mpbid φxABMblFn2xifxA0BB02xifxA0BB02xifxA0BB02xifxA0BB0
24 23 simp2d φ2xifxA0BB02xifxA0BB0
25 24 simpld φ2xifxA0BB0
26 eqid 2xifxA0CC0=2xifxA0CC0
27 eqid 2xifxA0CC0=2xifxA0CC0
28 eqid 2xifxA0CC0=2xifxA0CC0
29 eqid 2xifxA0CC0=2xifxA0CC0
30 26 27 28 29 3 iblcnlem φxAC𝐿1xACMblFn2xifxA0CC02xifxA0CC02xifxA0CC02xifxA0CC0
31 4 30 mpbid φxACMblFn2xifxA0CC02xifxA0CC02xifxA0CC02xifxA0CC0
32 31 simp2d φ2xifxA0CC02xifxA0CC0
33 32 simpld φ2xifxA0CC0
34 9 13 14 17 25 33 ibladdnclem φ2xifxA0B+CB+C0
35 9 renegcld φxAB
36 13 renegcld φxAC
37 14 negeqd φxAB+C=B+C
38 9 recnd φxAB
39 13 recnd φxAC
40 38 39 negdid φxAB+C=-B+C
41 37 40 eqtrd φxAB+C=-B+C
42 9 17 mbfneg φxABMblFn
43 24 simprd φ2xifxA0BB0
44 32 simprd φ2xifxA0CC0
45 35 36 41 42 43 44 ibladdnclem φ2xifxA0B+CB+C0
46 34 45 jca φ2xifxA0B+CB+C02xifxA0B+CB+C0
47 8 imcld φxAB
48 12 imcld φxAC
49 8 12 imaddd φxAB+C=B+C
50 16 simprd φxABMblFn
51 23 simp3d φ2xifxA0BB02xifxA0BB0
52 51 simpld φ2xifxA0BB0
53 31 simp3d φ2xifxA0CC02xifxA0CC0
54 53 simpld φ2xifxA0CC0
55 47 48 49 50 52 54 ibladdnclem φ2xifxA0B+CB+C0
56 47 renegcld φxAB
57 48 renegcld φxAC
58 49 negeqd φxAB+C=B+C
59 47 recnd φxAB
60 48 recnd φxAC
61 59 60 negdid φxAB+C=-B+C
62 58 61 eqtrd φxAB+C=-B+C
63 47 50 mbfneg φxABMblFn
64 51 simprd φ2xifxA0BB0
65 53 simprd φ2xifxA0CC0
66 56 57 62 63 64 65 ibladdnclem φ2xifxA0B+CB+C0
67 55 66 jca φ2xifxA0B+CB+C02xifxA0B+CB+C0
68 eqid 2xifxA0B+CB+C0=2xifxA0B+CB+C0
69 eqid 2xifxA0B+CB+C0=2xifxA0B+CB+C0
70 eqid 2xifxA0B+CB+C0=2xifxA0B+CB+C0
71 eqid 2xifxA0B+CB+C0=2xifxA0B+CB+C0
72 ovexd φxAB+CV
73 68 69 70 71 72 iblcnlem φxAB+C𝐿1xAB+CMblFn2xifxA0B+CB+C02xifxA0B+CB+C02xifxA0B+CB+C02xifxA0B+CB+C0
74 5 46 67 73 mpbir3and φxAB+C𝐿1