| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fconstmpt |
|
| 2 |
|
mbfconst |
|
| 3 |
2
|
3adant2 |
|
| 4 |
1 3
|
eqeltrrid |
|
| 5 |
|
ifan |
|
| 6 |
5
|
mpteq2i |
|
| 7 |
6
|
fveq2i |
|
| 8 |
|
simpl1 |
|
| 9 |
|
simpl2 |
|
| 10 |
|
simpl3 |
|
| 11 |
|
ax-icn |
|
| 12 |
|
ine0 |
|
| 13 |
|
elfzelz |
|
| 14 |
13
|
adantl |
|
| 15 |
|
expclz |
|
| 16 |
11 12 14 15
|
mp3an12i |
|
| 17 |
|
expne0i |
|
| 18 |
11 12 14 17
|
mp3an12i |
|
| 19 |
10 16 18
|
divcld |
|
| 20 |
19
|
recld |
|
| 21 |
|
0re |
|
| 22 |
|
ifcl |
|
| 23 |
20 21 22
|
sylancl |
|
| 24 |
|
max1 |
|
| 25 |
21 20 24
|
sylancr |
|
| 26 |
|
elrege0 |
|
| 27 |
23 25 26
|
sylanbrc |
|
| 28 |
|
itg2const |
|
| 29 |
8 9 27 28
|
syl3anc |
|
| 30 |
7 29
|
eqtrid |
|
| 31 |
23 9
|
remulcld |
|
| 32 |
30 31
|
eqeltrd |
|
| 33 |
32
|
ralrimiva |
|
| 34 |
|
eqidd |
|
| 35 |
|
eqidd |
|
| 36 |
|
simpl3 |
|
| 37 |
34 35 36
|
isibl2 |
|
| 38 |
4 33 37
|
mpbir2and |
|
| 39 |
1 38
|
eqeltrid |
|