Metamath Proof Explorer


Theorem iblconst

Description: A constant function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Assertion iblconst AdomvolvolABA×B𝐿1

Proof

Step Hyp Ref Expression
1 fconstmpt A×B=xAB
2 mbfconst AdomvolBA×BMblFn
3 2 3adant2 AdomvolvolABA×BMblFn
4 1 3 eqeltrrid AdomvolvolABxABMblFn
5 ifan ifxA0BikBik0=ifxAif0BikBik00
6 5 mpteq2i xifxA0BikBik0=xifxAif0BikBik00
7 6 fveq2i 2xifxA0BikBik0=2xifxAif0BikBik00
8 simpl1 AdomvolvolABk03Adomvol
9 simpl2 AdomvolvolABk03volA
10 simpl3 AdomvolvolABk03B
11 ax-icn i
12 ine0 i0
13 elfzelz k03k
14 13 adantl AdomvolvolABk03k
15 expclz ii0kik
16 11 12 14 15 mp3an12i AdomvolvolABk03ik
17 expne0i ii0kik0
18 11 12 14 17 mp3an12i AdomvolvolABk03ik0
19 10 16 18 divcld AdomvolvolABk03Bik
20 19 recld AdomvolvolABk03Bik
21 0re 0
22 ifcl Bik0if0BikBik0
23 20 21 22 sylancl AdomvolvolABk03if0BikBik0
24 max1 0Bik0if0BikBik0
25 21 20 24 sylancr AdomvolvolABk030if0BikBik0
26 elrege0 if0BikBik00+∞if0BikBik00if0BikBik0
27 23 25 26 sylanbrc AdomvolvolABk03if0BikBik00+∞
28 itg2const AdomvolvolAif0BikBik00+∞2xifxAif0BikBik00=if0BikBik0volA
29 8 9 27 28 syl3anc AdomvolvolABk032xifxAif0BikBik00=if0BikBik0volA
30 7 29 eqtrid AdomvolvolABk032xifxA0BikBik0=if0BikBik0volA
31 23 9 remulcld AdomvolvolABk03if0BikBik0volA
32 30 31 eqeltrd AdomvolvolABk032xifxA0BikBik0
33 32 ralrimiva AdomvolvolABk032xifxA0BikBik0
34 eqidd AdomvolvolABxifxA0BikBik0=xifxA0BikBik0
35 eqidd AdomvolvolABxABik=Bik
36 simpl3 AdomvolvolABxAB
37 34 35 36 isibl2 AdomvolvolABxAB𝐿1xABMblFnk032xifxA0BikBik0
38 4 33 37 mpbir2and AdomvolvolABxAB𝐿1
39 1 38 eqeltrid AdomvolvolABA×B𝐿1