Metamath Proof Explorer


Theorem iccpartdisj

Description: The segments of a partitioned half-open interval of extended reals are a disjoint collection. (Contributed by AV, 19-Jul-2020)

Ref Expression
Hypotheses iccpartiun.m φM
iccpartiun.p φPRePartM
Assertion iccpartdisj φDisji0..^MPiPi+1

Proof

Step Hyp Ref Expression
1 iccpartiun.m φM
2 iccpartiun.p φPRePartM
3 nfv iφ
4 nfreu1 i∃!i0..^MpPiPi+1
5 simpl φi0..^Mφ
6 1 adantr φi0..^MM
7 2 adantr φi0..^MPRePartM
8 nnnn0 MM0
9 0elfz M000M
10 1 8 9 3syl φ00M
11 10 adantr φi0..^M00M
12 6 7 11 iccpartxr φi0..^MP0*
13 nn0fz0 M0M0M
14 13 biimpi M0M0M
15 1 8 14 3syl φM0M
16 15 adantr φi0..^MM0M
17 6 7 16 iccpartxr φi0..^MPM*
18 1 2 iccpartgel φj0MP0Pj
19 elfzofz i0..^Mi0M
20 19 adantl φi0..^Mi0M
21 fveq2 j=iPj=Pi
22 21 breq2d j=iP0PjP0Pi
23 22 rspcv i0Mj0MP0PjP0Pi
24 20 23 syl φi0..^Mj0MP0PjP0Pi
25 24 ex φi0..^Mj0MP0PjP0Pi
26 18 25 mpid φi0..^MP0Pi
27 26 imp φi0..^MP0Pi
28 1 2 iccpartleu φj0MPjPM
29 fzofzp1 i0..^Mi+10M
30 29 adantl φi0..^Mi+10M
31 fveq2 j=i+1Pj=Pi+1
32 31 breq1d j=i+1PjPMPi+1PM
33 32 rspcv i+10Mj0MPjPMPi+1PM
34 30 33 syl φi0..^Mj0MPjPMPi+1PM
35 34 ex φi0..^Mj0MPjPMPi+1PM
36 28 35 mpid φi0..^MPi+1PM
37 36 imp φi0..^MPi+1PM
38 icossico P0*PM*P0PiPi+1PMPiPi+1P0PM
39 12 17 27 37 38 syl22anc φi0..^MPiPi+1P0PM
40 39 sseld φi0..^MpPiPi+1pP0PM
41 1 2 icceuelpart φpP0PM∃!i0..^MpPiPi+1
42 5 40 41 syl6an φi0..^MpPiPi+1∃!i0..^MpPiPi+1
43 42 ex φi0..^MpPiPi+1∃!i0..^MpPiPi+1
44 3 4 43 rexlimd φi0..^MpPiPi+1∃!i0..^MpPiPi+1
45 rmo5 *i0..^MpPiPi+1i0..^MpPiPi+1∃!i0..^MpPiPi+1
46 44 45 sylibr φ*i0..^MpPiPi+1
47 46 alrimiv φp*i0..^MpPiPi+1
48 df-disj Disji0..^MPiPi+1p*i0..^MpPiPi+1
49 47 48 sylibr φDisji0..^MPiPi+1