Metamath Proof Explorer


Theorem iccpartdisj

Description: The segments of a partitioned half-open interval of extended reals are a disjoint collection. (Contributed by AV, 19-Jul-2020)

Ref Expression
Hypotheses iccpartiun.m φ M
iccpartiun.p φ P RePart M
Assertion iccpartdisj φ Disj i 0 ..^ M P i P i + 1

Proof

Step Hyp Ref Expression
1 iccpartiun.m φ M
2 iccpartiun.p φ P RePart M
3 nfv i φ
4 nfreu1 i ∃! i 0 ..^ M p P i P i + 1
5 simpl φ i 0 ..^ M φ
6 1 adantr φ i 0 ..^ M M
7 2 adantr φ i 0 ..^ M P RePart M
8 nnnn0 M M 0
9 0elfz M 0 0 0 M
10 1 8 9 3syl φ 0 0 M
11 10 adantr φ i 0 ..^ M 0 0 M
12 6 7 11 iccpartxr φ i 0 ..^ M P 0 *
13 nn0fz0 M 0 M 0 M
14 13 biimpi M 0 M 0 M
15 1 8 14 3syl φ M 0 M
16 15 adantr φ i 0 ..^ M M 0 M
17 6 7 16 iccpartxr φ i 0 ..^ M P M *
18 1 2 iccpartgel φ j 0 M P 0 P j
19 elfzofz i 0 ..^ M i 0 M
20 19 adantl φ i 0 ..^ M i 0 M
21 fveq2 j = i P j = P i
22 21 breq2d j = i P 0 P j P 0 P i
23 22 rspcv i 0 M j 0 M P 0 P j P 0 P i
24 20 23 syl φ i 0 ..^ M j 0 M P 0 P j P 0 P i
25 24 ex φ i 0 ..^ M j 0 M P 0 P j P 0 P i
26 18 25 mpid φ i 0 ..^ M P 0 P i
27 26 imp φ i 0 ..^ M P 0 P i
28 1 2 iccpartleu φ j 0 M P j P M
29 fzofzp1 i 0 ..^ M i + 1 0 M
30 29 adantl φ i 0 ..^ M i + 1 0 M
31 fveq2 j = i + 1 P j = P i + 1
32 31 breq1d j = i + 1 P j P M P i + 1 P M
33 32 rspcv i + 1 0 M j 0 M P j P M P i + 1 P M
34 30 33 syl φ i 0 ..^ M j 0 M P j P M P i + 1 P M
35 34 ex φ i 0 ..^ M j 0 M P j P M P i + 1 P M
36 28 35 mpid φ i 0 ..^ M P i + 1 P M
37 36 imp φ i 0 ..^ M P i + 1 P M
38 icossico P 0 * P M * P 0 P i P i + 1 P M P i P i + 1 P 0 P M
39 12 17 27 37 38 syl22anc φ i 0 ..^ M P i P i + 1 P 0 P M
40 39 sseld φ i 0 ..^ M p P i P i + 1 p P 0 P M
41 1 2 icceuelpart φ p P 0 P M ∃! i 0 ..^ M p P i P i + 1
42 5 40 41 syl6an φ i 0 ..^ M p P i P i + 1 ∃! i 0 ..^ M p P i P i + 1
43 42 ex φ i 0 ..^ M p P i P i + 1 ∃! i 0 ..^ M p P i P i + 1
44 3 4 43 rexlimd φ i 0 ..^ M p P i P i + 1 ∃! i 0 ..^ M p P i P i + 1
45 rmo5 * i 0 ..^ M p P i P i + 1 i 0 ..^ M p P i P i + 1 ∃! i 0 ..^ M p P i P i + 1
46 44 45 sylibr φ * i 0 ..^ M p P i P i + 1
47 46 alrimiv φ p * i 0 ..^ M p P i P i + 1
48 df-disj Disj i 0 ..^ M P i P i + 1 p * i 0 ..^ M p P i P i + 1
49 47 48 sylibr φ Disj i 0 ..^ M P i P i + 1