Description: If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iccpartgtprec.m | |
|
iccpartgtprec.p | |
||
Assertion | iccpartrn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.m | |
|
2 | iccpartgtprec.p | |
|
3 | iccpart | |
|
4 | 1 3 | syl | |
5 | elmapfn | |
|
6 | 5 | adantr | |
7 | 4 6 | syl6bi | |
8 | 2 7 | mpd | |
9 | fvelrnb | |
|
10 | 8 9 | syl | |
11 | 1 | adantr | |
12 | 2 | adantr | |
13 | simpr | |
|
14 | 11 12 13 | iccpartxr | |
15 | 1 2 | iccpartgel | |
16 | fveq2 | |
|
17 | 16 | breq2d | |
18 | 17 | rspcva | |
19 | 18 | expcom | |
20 | 15 19 | syl | |
21 | 20 | imp | |
22 | 1 2 | iccpartleu | |
23 | 16 | breq1d | |
24 | 23 | rspcva | |
25 | 24 | expcom | |
26 | 22 25 | syl | |
27 | 26 | imp | |
28 | nnnn0 | |
|
29 | 0elfz | |
|
30 | 1 28 29 | 3syl | |
31 | 1 2 30 | iccpartxr | |
32 | nn0fz0 | |
|
33 | 28 32 | sylib | |
34 | 1 33 | syl | |
35 | 1 2 34 | iccpartxr | |
36 | 31 35 | jca | |
37 | 36 | adantr | |
38 | elicc1 | |
|
39 | 37 38 | syl | |
40 | 14 21 27 39 | mpbir3and | |
41 | eleq1 | |
|
42 | 40 41 | syl5ibcom | |
43 | 42 | rexlimdva | |
44 | 10 43 | sylbid | |
45 | 44 | ssrdv | |