Metamath Proof Explorer


Theorem iccpartrn

Description: If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φM
iccpartgtprec.p φPRePartM
Assertion iccpartrn φranPP0PM

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φM
2 iccpartgtprec.p φPRePartM
3 iccpart MPRePartMP*0Mi0..^MPi<Pi+1
4 1 3 syl φPRePartMP*0Mi0..^MPi<Pi+1
5 elmapfn P*0MPFn0M
6 5 adantr P*0Mi0..^MPi<Pi+1PFn0M
7 4 6 syl6bi φPRePartMPFn0M
8 2 7 mpd φPFn0M
9 fvelrnb PFn0MpranPi0MPi=p
10 8 9 syl φpranPi0MPi=p
11 1 adantr φi0MM
12 2 adantr φi0MPRePartM
13 simpr φi0Mi0M
14 11 12 13 iccpartxr φi0MPi*
15 1 2 iccpartgel φk0MP0Pk
16 fveq2 k=iPk=Pi
17 16 breq2d k=iP0PkP0Pi
18 17 rspcva i0Mk0MP0PkP0Pi
19 18 expcom k0MP0Pki0MP0Pi
20 15 19 syl φi0MP0Pi
21 20 imp φi0MP0Pi
22 1 2 iccpartleu φk0MPkPM
23 16 breq1d k=iPkPMPiPM
24 23 rspcva i0Mk0MPkPMPiPM
25 24 expcom k0MPkPMi0MPiPM
26 22 25 syl φi0MPiPM
27 26 imp φi0MPiPM
28 nnnn0 MM0
29 0elfz M000M
30 1 28 29 3syl φ00M
31 1 2 30 iccpartxr φP0*
32 nn0fz0 M0M0M
33 28 32 sylib MM0M
34 1 33 syl φM0M
35 1 2 34 iccpartxr φPM*
36 31 35 jca φP0*PM*
37 36 adantr φi0MP0*PM*
38 elicc1 P0*PM*PiP0PMPi*P0PiPiPM
39 37 38 syl φi0MPiP0PMPi*P0PiPiPM
40 14 21 27 39 mpbir3and φi0MPiP0PM
41 eleq1 Pi=pPiP0PMpP0PM
42 40 41 syl5ibcom φi0MPi=ppP0PM
43 42 rexlimdva φi0MPi=ppP0PM
44 10 43 sylbid φpranPpP0PM
45 44 ssrdv φranPP0PM