| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icoshftf1o.1 |
|
| 2 |
|
icoshft |
|
| 3 |
2
|
ralrimiv |
|
| 4 |
|
readdcl |
|
| 5 |
4
|
3adant2 |
|
| 6 |
|
readdcl |
|
| 7 |
6
|
3adant1 |
|
| 8 |
|
renegcl |
|
| 9 |
8
|
3ad2ant3 |
|
| 10 |
|
icoshft |
|
| 11 |
5 7 9 10
|
syl3anc |
|
| 12 |
11
|
imp |
|
| 13 |
7
|
rexrd |
|
| 14 |
|
icossre |
|
| 15 |
5 13 14
|
syl2anc |
|
| 16 |
15
|
sselda |
|
| 17 |
16
|
recnd |
|
| 18 |
|
simpl3 |
|
| 19 |
18
|
recnd |
|
| 20 |
17 19
|
negsubd |
|
| 21 |
5
|
recnd |
|
| 22 |
|
simp3 |
|
| 23 |
22
|
recnd |
|
| 24 |
21 23
|
negsubd |
|
| 25 |
|
simp1 |
|
| 26 |
25
|
recnd |
|
| 27 |
26 23
|
pncand |
|
| 28 |
24 27
|
eqtrd |
|
| 29 |
7
|
recnd |
|
| 30 |
29 23
|
negsubd |
|
| 31 |
|
simp2 |
|
| 32 |
31
|
recnd |
|
| 33 |
32 23
|
pncand |
|
| 34 |
30 33
|
eqtrd |
|
| 35 |
28 34
|
oveq12d |
|
| 36 |
35
|
adantr |
|
| 37 |
12 20 36
|
3eltr3d |
|
| 38 |
|
reueq |
|
| 39 |
37 38
|
sylib |
|
| 40 |
16
|
adantr |
|
| 41 |
40
|
recnd |
|
| 42 |
|
simpll3 |
|
| 43 |
42
|
recnd |
|
| 44 |
|
simpl1 |
|
| 45 |
|
simpl2 |
|
| 46 |
45
|
rexrd |
|
| 47 |
|
icossre |
|
| 48 |
44 46 47
|
syl2anc |
|
| 49 |
48
|
sselda |
|
| 50 |
49
|
recnd |
|
| 51 |
41 43 50
|
subadd2d |
|
| 52 |
|
eqcom |
|
| 53 |
|
eqcom |
|
| 54 |
51 52 53
|
3bitr4g |
|
| 55 |
54
|
reubidva |
|
| 56 |
39 55
|
mpbid |
|
| 57 |
56
|
ralrimiva |
|
| 58 |
1
|
f1ompt |
|
| 59 |
3 57 58
|
sylanbrc |
|