Metamath Proof Explorer


Theorem icoshftf1o

Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008) (Proof shortened by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypothesis icoshftf1o.1 F=xABx+C
Assertion icoshftf1o ABCF:AB1-1 ontoA+CB+C

Proof

Step Hyp Ref Expression
1 icoshftf1o.1 F=xABx+C
2 icoshft ABCxABx+CA+CB+C
3 2 ralrimiv ABCxABx+CA+CB+C
4 readdcl ACA+C
5 4 3adant2 ABCA+C
6 readdcl BCB+C
7 6 3adant1 ABCB+C
8 renegcl CC
9 8 3ad2ant3 ABCC
10 icoshft A+CB+CCyA+CB+Cy+CA+C+CB+C+C
11 5 7 9 10 syl3anc ABCyA+CB+Cy+CA+C+CB+C+C
12 11 imp ABCyA+CB+Cy+CA+C+CB+C+C
13 7 rexrd ABCB+C*
14 icossre A+CB+C*A+CB+C
15 5 13 14 syl2anc ABCA+CB+C
16 15 sselda ABCyA+CB+Cy
17 16 recnd ABCyA+CB+Cy
18 simpl3 ABCyA+CB+CC
19 18 recnd ABCyA+CB+CC
20 17 19 negsubd ABCyA+CB+Cy+C=yC
21 5 recnd ABCA+C
22 simp3 ABCC
23 22 recnd ABCC
24 21 23 negsubd ABCA+C+C=A+C-C
25 simp1 ABCA
26 25 recnd ABCA
27 26 23 pncand ABCA+C-C=A
28 24 27 eqtrd ABCA+C+C=A
29 7 recnd ABCB+C
30 29 23 negsubd ABCB+C+C=B+C-C
31 simp2 ABCB
32 31 recnd ABCB
33 32 23 pncand ABCB+C-C=B
34 30 33 eqtrd ABCB+C+C=B
35 28 34 oveq12d ABCA+C+CB+C+C=AB
36 35 adantr ABCyA+CB+CA+C+CB+C+C=AB
37 12 20 36 3eltr3d ABCyA+CB+CyCAB
38 reueq yCAB∃!xABx=yC
39 37 38 sylib ABCyA+CB+C∃!xABx=yC
40 16 adantr ABCyA+CB+CxABy
41 40 recnd ABCyA+CB+CxABy
42 simpll3 ABCyA+CB+CxABC
43 42 recnd ABCyA+CB+CxABC
44 simpl1 ABCyA+CB+CA
45 simpl2 ABCyA+CB+CB
46 45 rexrd ABCyA+CB+CB*
47 icossre AB*AB
48 44 46 47 syl2anc ABCyA+CB+CAB
49 48 sselda ABCyA+CB+CxABx
50 49 recnd ABCyA+CB+CxABx
51 41 43 50 subadd2d ABCyA+CB+CxAByC=xx+C=y
52 eqcom x=yCyC=x
53 eqcom y=x+Cx+C=y
54 51 52 53 3bitr4g ABCyA+CB+CxABx=yCy=x+C
55 54 reubidva ABCyA+CB+C∃!xABx=yC∃!xABy=x+C
56 39 55 mpbid ABCyA+CB+C∃!xABy=x+C
57 56 ralrimiva ABCyA+CB+C∃!xABy=x+C
58 1 f1ompt F:AB1-1 ontoA+CB+CxABx+CA+CB+CyA+CB+C∃!xABy=x+C
59 3 57 58 sylanbrc ABCF:AB1-1 ontoA+CB+C