Metamath Proof Explorer


Theorem igenval2

Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses igenval2.1 G=1stR
igenval2.2 X=ranG
Assertion igenval2 RRingOpsSXRIdlGenS=IIIdlRSIjIdlRSjIj

Proof

Step Hyp Ref Expression
1 igenval2.1 G=1stR
2 igenval2.2 X=ranG
3 1 2 igenidl RRingOpsSXRIdlGenSIdlR
4 1 2 igenss RRingOpsSXSRIdlGenS
5 igenmin RRingOpsjIdlRSjRIdlGenSj
6 5 3expia RRingOpsjIdlRSjRIdlGenSj
7 6 ralrimiva RRingOpsjIdlRSjRIdlGenSj
8 7 adantr RRingOpsSXjIdlRSjRIdlGenSj
9 3 4 8 3jca RRingOpsSXRIdlGenSIdlRSRIdlGenSjIdlRSjRIdlGenSj
10 eleq1 RIdlGenS=IRIdlGenSIdlRIIdlR
11 sseq2 RIdlGenS=ISRIdlGenSSI
12 sseq1 RIdlGenS=IRIdlGenSjIj
13 12 imbi2d RIdlGenS=ISjRIdlGenSjSjIj
14 13 ralbidv RIdlGenS=IjIdlRSjRIdlGenSjjIdlRSjIj
15 10 11 14 3anbi123d RIdlGenS=IRIdlGenSIdlRSRIdlGenSjIdlRSjRIdlGenSjIIdlRSIjIdlRSjIj
16 9 15 syl5ibcom RRingOpsSXRIdlGenS=IIIdlRSIjIdlRSjIj
17 igenmin RRingOpsIIdlRSIRIdlGenSI
18 17 3adant3r3 RRingOpsIIdlRSIjIdlRSjIjRIdlGenSI
19 18 adantlr RRingOpsSXIIdlRSIjIdlRSjIjRIdlGenSI
20 ssint IiIdlR|SijiIdlR|SiIj
21 sseq2 i=jSiSj
22 21 ralrab jiIdlR|SiIjjIdlRSjIj
23 20 22 sylbbr jIdlRSjIjIiIdlR|Si
24 23 3ad2ant3 IIdlRSIjIdlRSjIjIiIdlR|Si
25 24 adantl RRingOpsSXIIdlRSIjIdlRSjIjIiIdlR|Si
26 1 2 igenval RRingOpsSXRIdlGenS=iIdlR|Si
27 26 adantr RRingOpsSXIIdlRSIjIdlRSjIjRIdlGenS=iIdlR|Si
28 25 27 sseqtrrd RRingOpsSXIIdlRSIjIdlRSjIjIRIdlGenS
29 19 28 eqssd RRingOpsSXIIdlRSIjIdlRSjIjRIdlGenS=I
30 29 ex RRingOpsSXIIdlRSIjIdlRSjIjRIdlGenS=I
31 16 30 impbid RRingOpsSXRIdlGenS=IIIdlRSIjIdlRSjIj