Metamath Proof Explorer


Theorem imo72b2lem2

Description: Lemma for imo72b2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses imo72b2lem2.1 φF:
imo72b2lem2.2 φC
imo72b2lem2.3 φzFzC
Assertion imo72b2lem2 φsupabsF<C

Proof

Step Hyp Ref Expression
1 imo72b2lem2.1 φF:
2 imo72b2lem2.2 φC
3 imo72b2lem2.3 φzFzC
4 imaco absF=absF
5 4 eqcomi absF=absF
6 imassrn absFranabsF
7 6 a1i φabsFranabsF
8 absf abs:
9 8 a1i φabs:
10 ax-resscn
11 10 a1i φ
12 9 11 fssresd φabs:
13 1 12 fco2d φabsF:
14 13 frnd φranabsF
15 7 14 sstrd φabsF
16 5 15 eqsstrid φabsF
17 0re 0
18 17 ne0ii
19 18 a1i φ
20 19 13 wnefimgd φabsF
21 20 necomd φabsF
22 5 a1i φabsF=absF
23 21 22 neeqtrrd φabsF
24 23 necomd φabsF
25 simpr φc=Cc=C
26 25 breq2d φc=CvcvC
27 26 ralbidv φc=CvabsFvcvabsFvC
28 1 3 extoimad φvabsFvC
29 2 27 28 rspcedvd φcvabsFvc
30 1 3 extoimad φtabsFtC
31 16 24 29 2 30 suprleubrd φsupabsF<C