Metamath Proof Explorer


Theorem incsmf

Description: A real-valued, nondecreasing function is Borel measurable. Proposition 121D (c) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses incsmf.a φ A
incsmf.f φ F : A
incsmf.i φ x A y A x y F x F y
incsmf.j J = topGen ran .
incsmf.b B = SalGen J
Assertion incsmf φ F SMblFn B

Proof

Step Hyp Ref Expression
1 incsmf.a φ A
2 incsmf.f φ F : A
3 incsmf.i φ x A y A x y F x F y
4 incsmf.j J = topGen ran .
5 incsmf.b B = SalGen J
6 nfv a φ
7 retop topGen ran . Top
8 4 7 eqeltri J Top
9 8 a1i φ J Top
10 9 5 salgencld φ B SAlg
11 9 5 unisalgen2 φ B = J
12 4 unieqi J = topGen ran .
13 12 a1i φ J = topGen ran .
14 uniretop = topGen ran .
15 14 eqcomi topGen ran . =
16 15 a1i φ topGen ran . =
17 11 13 16 3eqtrrd φ = B
18 1 17 sseqtrd φ A B
19 nfv w φ a
20 nfv z φ a
21 1 adantr φ a A
22 2 frexr φ F : A *
23 22 adantr φ a F : A *
24 breq1 x = w x y w y
25 fveq2 x = w F x = F w
26 25 breq1d x = w F x F y F w F y
27 24 26 imbi12d x = w x y F x F y w y F w F y
28 breq2 y = z w y w z
29 fveq2 y = z F y = F z
30 29 breq2d y = z F w F y F w F z
31 28 30 imbi12d y = z w y F w F y w z F w F z
32 27 31 cbvral2vw x A y A x y F x F y w A z A w z F w F z
33 3 32 sylib φ w A z A w z F w F z
34 33 adantr φ a w A z A w z F w F z
35 rexr a a *
36 35 adantl φ a a *
37 25 breq1d x = w F x < a F w < a
38 37 cbvrabv x A | F x < a = w A | F w < a
39 eqid sup x A | F x < a * < = sup x A | F x < a * <
40 eqid −∞ sup x A | F x < a * < = −∞ sup x A | F x < a * <
41 eqid −∞ sup x A | F x < a * < = −∞ sup x A | F x < a * <
42 19 20 21 23 34 4 5 36 38 39 40 41 incsmflem φ a b B x A | F x < a = b A
43 reex V
44 43 a1i φ V
45 44 1 ssexd φ A V
46 elrest B SAlg A V x A | F x < a B 𝑡 A b B x A | F x < a = b A
47 10 45 46 syl2anc φ x A | F x < a B 𝑡 A b B x A | F x < a = b A
48 47 adantr φ a x A | F x < a B 𝑡 A b B x A | F x < a = b A
49 42 48 mpbird φ a x A | F x < a B 𝑡 A
50 6 10 18 2 49 issmfd φ F SMblFn B