Metamath Proof Explorer


Theorem infpn2

Description: There exist infinitely many prime numbers: the set of all primes S is unbounded by infpn , so by unben it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005)

Ref Expression
Hypothesis infpn2.1 S=n|1<nmnmm=1m=n
Assertion infpn2 S

Proof

Step Hyp Ref Expression
1 infpn2.1 S=n|1<nmnmm=1m=n
2 1 ssrab3 S
3 infpn jkj<kmkmm=1m=k
4 nnge1 j1j
5 4 adantr jk1j
6 1re 1
7 nnre jj
8 nnre kk
9 lelttr 1jk1jj<k1<k
10 6 7 8 9 mp3an3an jk1jj<k1<k
11 5 10 mpand jkj<k1<k
12 11 ancld jkj<kj<k1<k
13 12 anim1d jkj<kmkmm=1m=kj<k1<kmkmm=1m=k
14 anass j<k1<kmkmm=1m=kj<k1<kmkmm=1m=k
15 13 14 imbitrdi jkj<kmkmm=1m=kj<k1<kmkmm=1m=k
16 15 reximdva jkj<kmkmm=1m=kkj<k1<kmkmm=1m=k
17 3 16 mpd jkj<k1<kmkmm=1m=k
18 breq2 n=k1<n1<k
19 oveq1 n=knm=km
20 19 eleq1d n=knmkm
21 equequ2 n=km=nm=k
22 21 orbi2d n=km=1m=nm=1m=k
23 20 22 imbi12d n=knmm=1m=nkmm=1m=k
24 23 ralbidv n=kmnmm=1m=nmkmm=1m=k
25 18 24 anbi12d n=k1<nmnmm=1m=n1<kmkmm=1m=k
26 25 1 elrab2 kSk1<kmkmm=1m=k
27 26 anbi1i kSj<kk1<kmkmm=1m=kj<k
28 anass k1<kmkmm=1m=kj<kk1<kmkmm=1m=kj<k
29 ancom 1<kmkmm=1m=kj<kj<k1<kmkmm=1m=k
30 29 anbi2i k1<kmkmm=1m=kj<kkj<k1<kmkmm=1m=k
31 27 28 30 3bitri kSj<kkj<k1<kmkmm=1m=k
32 31 rexbii2 kSj<kkj<k1<kmkmm=1m=k
33 17 32 sylibr jkSj<k
34 33 rgen jkSj<k
35 unben SjkSj<kS
36 2 34 35 mp2an S