Description: There exist infinitely many prime numbers: the set of all primes S is unbounded by infpn , so by unben it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005)
Ref | Expression | ||
---|---|---|---|
Hypothesis | infpn2.1 | |
|
Assertion | infpn2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infpn2.1 | |
|
2 | 1 | ssrab3 | |
3 | infpn | |
|
4 | nnge1 | |
|
5 | 4 | adantr | |
6 | 1re | |
|
7 | nnre | |
|
8 | nnre | |
|
9 | lelttr | |
|
10 | 6 7 8 9 | mp3an3an | |
11 | 5 10 | mpand | |
12 | 11 | ancld | |
13 | 12 | anim1d | |
14 | anass | |
|
15 | 13 14 | imbitrdi | |
16 | 15 | reximdva | |
17 | 3 16 | mpd | |
18 | breq2 | |
|
19 | oveq1 | |
|
20 | 19 | eleq1d | |
21 | equequ2 | |
|
22 | 21 | orbi2d | |
23 | 20 22 | imbi12d | |
24 | 23 | ralbidv | |
25 | 18 24 | anbi12d | |
26 | 25 1 | elrab2 | |
27 | 26 | anbi1i | |
28 | anass | |
|
29 | ancom | |
|
30 | 29 | anbi2i | |
31 | 27 28 30 | 3bitri | |
32 | 31 | rexbii2 | |
33 | 17 32 | sylibr | |
34 | 33 | rgen | |
35 | unben | |
|
36 | 2 34 35 | mp2an | |