Metamath Proof Explorer


Theorem initoeu1

Description: Initial objects are essentially unique (strong form), i.e. there is a unique isomorphism between two initial objects, see statement in Lang p. 58 ("... if P, P' are two universal objects [... then there exists a unique isomorphism between them.". (Proposed by BJ, 14-Apr-2020.) (Contributed by AV, 14-Apr-2020)

Ref Expression
Hypotheses initoeu1.c φCCat
initoeu1.a φAInitOC
initoeu1.b φBInitOC
Assertion initoeu1 φ∃!ffAIsoCB

Proof

Step Hyp Ref Expression
1 initoeu1.c φCCat
2 initoeu1.a φAInitOC
3 initoeu1.b φBInitOC
4 eqid BaseC=BaseC
5 eqid HomC=HomC
6 4 5 1 isinitoi φAInitOCABaseCbBaseC∃!ffAHomCb
7 2 6 mpdan φABaseCbBaseC∃!ffAHomCb
8 4 5 1 isinitoi φBInitOCBBaseCaBaseC∃!ggBHomCa
9 3 8 mpdan φBBaseCaBaseC∃!ggBHomCa
10 oveq2 b=BAHomCb=AHomCB
11 10 eleq2d b=BfAHomCbfAHomCB
12 11 eubidv b=B∃!ffAHomCb∃!ffAHomCB
13 12 rspcv BBaseCbBaseC∃!ffAHomCb∃!ffAHomCB
14 eqid IsoC=IsoC
15 1 adantr φBBaseCABaseCCCat
16 simprr φBBaseCABaseCABaseC
17 simprl φBBaseCABaseCBBaseC
18 4 5 14 15 16 17 isohom φBBaseCABaseCAIsoCBAHomCB
19 18 adantr φBBaseCABaseC∃!ffAHomCBaBaseC∃!ggBHomCaAIsoCBAHomCB
20 euex ∃!ffAHomCBffAHomCB
21 20 a1i φBBaseCABaseC∃!ffAHomCBffAHomCB
22 oveq2 a=ABHomCa=BHomCA
23 22 eleq2d a=AgBHomCagBHomCA
24 23 eubidv a=A∃!ggBHomCa∃!ggBHomCA
25 24 rspcva ABaseCaBaseC∃!ggBHomCa∃!ggBHomCA
26 euex ∃!ggBHomCAggBHomCA
27 25 26 syl ABaseCaBaseC∃!ggBHomCaggBHomCA
28 27 ex ABaseCaBaseC∃!ggBHomCaggBHomCA
29 28 ad2antll φBBaseCABaseCaBaseC∃!ggBHomCaggBHomCA
30 eqid InvC=InvC
31 15 ad2antrr φBBaseCABaseCgBHomCAfAHomCBCCat
32 16 ad2antrr φBBaseCABaseCgBHomCAfAHomCBABaseC
33 17 ad2antrr φBBaseCABaseCgBHomCAfAHomCBBBaseC
34 1 2 3 2initoinv φgBHomCAfAHomCBfAInvCBg
35 34 ad4ant134 φBBaseCABaseCgBHomCAfAHomCBfAInvCBg
36 4 30 31 32 33 14 35 inviso1 φBBaseCABaseCgBHomCAfAHomCBfAIsoCB
37 36 ex φBBaseCABaseCgBHomCAfAHomCBfAIsoCB
38 37 eximdv φBBaseCABaseCgBHomCAffAHomCBffAIsoCB
39 38 expcom gBHomCAφBBaseCABaseCffAHomCBffAIsoCB
40 39 exlimiv ggBHomCAφBBaseCABaseCffAHomCBffAIsoCB
41 40 com3l φBBaseCABaseCffAHomCBggBHomCAffAIsoCB
42 41 impd φBBaseCABaseCffAHomCBggBHomCAffAIsoCB
43 21 29 42 syl2and φBBaseCABaseC∃!ffAHomCBaBaseC∃!ggBHomCaffAIsoCB
44 43 imp φBBaseCABaseC∃!ffAHomCBaBaseC∃!ggBHomCaffAIsoCB
45 simprl φBBaseCABaseC∃!ffAHomCBaBaseC∃!ggBHomCa∃!ffAHomCB
46 euelss AIsoCBAHomCBffAIsoCB∃!ffAHomCB∃!ffAIsoCB
47 19 44 45 46 syl3anc φBBaseCABaseC∃!ffAHomCBaBaseC∃!ggBHomCa∃!ffAIsoCB
48 47 exp42 φBBaseCABaseC∃!ffAHomCBaBaseC∃!ggBHomCa∃!ffAIsoCB
49 48 com24 φ∃!ffAHomCBaBaseC∃!ggBHomCaABaseCBBaseC∃!ffAIsoCB
50 49 com14 BBaseC∃!ffAHomCBaBaseC∃!ggBHomCaABaseCφ∃!ffAIsoCB
51 50 expd BBaseC∃!ffAHomCBaBaseC∃!ggBHomCaABaseCφ∃!ffAIsoCB
52 13 51 syldc bBaseC∃!ffAHomCbBBaseCaBaseC∃!ggBHomCaABaseCφ∃!ffAIsoCB
53 52 com15 φBBaseCaBaseC∃!ggBHomCaABaseCbBaseC∃!ffAHomCb∃!ffAIsoCB
54 53 impd φBBaseCaBaseC∃!ggBHomCaABaseCbBaseC∃!ffAHomCb∃!ffAIsoCB
55 9 54 mpd φABaseCbBaseC∃!ffAHomCb∃!ffAIsoCB
56 55 impd φABaseCbBaseC∃!ffAHomCb∃!ffAIsoCB
57 7 56 mpd φ∃!ffAIsoCB