Step |
Hyp |
Ref |
Expression |
1 |
|
initoeu1.c |
|
2 |
|
initoeu1.a |
|
3 |
|
initoeu1.b |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
4 5 1
|
isinitoi |
|
7 |
2 6
|
mpdan |
|
8 |
4 5 1
|
isinitoi |
|
9 |
3 8
|
mpdan |
|
10 |
|
oveq2 |
|
11 |
10
|
eleq2d |
|
12 |
11
|
eubidv |
|
13 |
12
|
rspcv |
|
14 |
|
eqid |
|
15 |
1
|
adantr |
|
16 |
|
simprr |
|
17 |
|
simprl |
|
18 |
4 5 14 15 16 17
|
isohom |
|
19 |
18
|
adantr |
|
20 |
|
euex |
|
21 |
20
|
a1i |
|
22 |
|
oveq2 |
|
23 |
22
|
eleq2d |
|
24 |
23
|
eubidv |
|
25 |
24
|
rspcva |
|
26 |
|
euex |
|
27 |
25 26
|
syl |
|
28 |
27
|
ex |
|
29 |
28
|
ad2antll |
|
30 |
|
eqid |
|
31 |
15
|
ad2antrr |
|
32 |
16
|
ad2antrr |
|
33 |
17
|
ad2antrr |
|
34 |
1 2 3
|
2initoinv |
|
35 |
34
|
ad4ant134 |
|
36 |
4 30 31 32 33 14 35
|
inviso1 |
|
37 |
36
|
ex |
|
38 |
37
|
eximdv |
|
39 |
38
|
expcom |
|
40 |
39
|
exlimiv |
|
41 |
40
|
com3l |
|
42 |
41
|
impd |
|
43 |
21 29 42
|
syl2and |
|
44 |
43
|
imp |
|
45 |
|
simprl |
|
46 |
|
euelss |
|
47 |
19 44 45 46
|
syl3anc |
|
48 |
47
|
exp42 |
|
49 |
48
|
com24 |
|
50 |
49
|
com14 |
|
51 |
50
|
expd |
|
52 |
13 51
|
syldc |
|
53 |
52
|
com15 |
|
54 |
53
|
impd |
|
55 |
9 54
|
mpd |
|
56 |
55
|
impd |
|
57 |
7 56
|
mpd |
|