Metamath Proof Explorer


Theorem iocinico

Description: The intersection of two sets that meet at a point is that point. (Contributed by Jon Pennant, 12-Jun-2019)

Ref Expression
Assertion iocinico A*B*C*A<BB<CABBC=B

Proof

Step Hyp Ref Expression
1 df-in ABBC=x|xABxBC
2 elioc1 A*B*xABx*A<xxB
3 2 3adant3 A*B*C*xABx*A<xxB
4 3simpb x*A<xxBx*xB
5 3 4 syl6bi A*B*C*xABx*xB
6 elico1 B*C*xBCx*Bxx<C
7 6 3adant1 A*B*C*xBCx*Bxx<C
8 3simpa x*Bxx<Cx*Bx
9 7 8 syl6bi A*B*C*xBCx*Bx
10 5 9 anim12d A*B*C*xABxBCx*xBx*Bx
11 simpll x*xBx*Bxx*
12 simprr x*xBx*BxBx
13 simplr x*xBx*BxxB
14 11 12 13 3jca x*xBx*Bxx*BxxB
15 10 14 syl6 A*B*C*xABxBCx*BxxB
16 elicc1 B*B*xBBx*BxxB
17 16 anidms B*xBBx*BxxB
18 17 3ad2ant2 A*B*C*xBBx*BxxB
19 15 18 sylibrd A*B*C*xABxBCxBB
20 19 ss2abdv A*B*C*x|xABxBCx|xBB
21 1 20 eqsstrid A*B*C*ABBCx|xBB
22 abid2 x|xBB=BB
23 21 22 sseqtrdi A*B*C*ABBCBB
24 23 adantr A*B*C*A<BB<CABBCBB
25 iccid B*BB=B
26 25 3ad2ant2 A*B*C*BB=B
27 26 adantr A*B*C*A<BB<CBB=B
28 24 27 sseqtrd A*B*C*A<BB<CABBCB
29 simpl2 A*B*C*A<BB<CB*
30 simprl A*B*C*A<BB<CA<B
31 29 xrleidd A*B*C*A<BB<CBB
32 elioc1 A*B*BABB*A<BBB
33 32 3adant3 A*B*C*BABB*A<BBB
34 33 adantr A*B*C*A<BB<CBABB*A<BBB
35 29 30 31 34 mpbir3and A*B*C*A<BB<CBAB
36 simprr A*B*C*A<BB<CB<C
37 elico1 B*C*BBCB*BBB<C
38 37 3adant1 A*B*C*BBCB*BBB<C
39 38 adantr A*B*C*A<BB<CBBCB*BBB<C
40 29 31 36 39 mpbir3and A*B*C*A<BB<CBBC
41 35 40 elind A*B*C*A<BB<CBABBC
42 41 snssd A*B*C*A<BB<CBABBC
43 28 42 eqssd A*B*C*A<BB<CABBC=B