Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008) (Revised by Mario Carneiro, 7-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ip2eq.h | |
|
ip2eq.v | |
||
Assertion | ip2eq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip2eq.h | |
|
2 | ip2eq.v | |
|
3 | oveq2 | |
|
4 | 3 | ralrimivw | |
5 | phllmod | |
|
6 | eqid | |
|
7 | 2 6 | lmodvsubcl | |
8 | 5 7 | syl3an1 | |
9 | oveq1 | |
|
10 | oveq1 | |
|
11 | 9 10 | eqeq12d | |
12 | 11 | rspcv | |
13 | 8 12 | syl | |
14 | simp1 | |
|
15 | simp2 | |
|
16 | simp3 | |
|
17 | eqid | |
|
18 | eqid | |
|
19 | 17 1 2 6 18 | ipsubdi | |
20 | 14 8 15 16 19 | syl13anc | |
21 | 20 | eqeq1d | |
22 | eqid | |
|
23 | eqid | |
|
24 | 17 1 2 22 23 | ipeq0 | |
25 | 14 8 24 | syl2anc | |
26 | 21 25 | bitr3d | |
27 | 5 | 3ad2ant1 | |
28 | 17 | lmodfgrp | |
29 | 27 28 | syl | |
30 | eqid | |
|
31 | 17 1 2 30 | ipcl | |
32 | 14 8 15 31 | syl3anc | |
33 | 17 1 2 30 | ipcl | |
34 | 14 8 16 33 | syl3anc | |
35 | 30 22 18 | grpsubeq0 | |
36 | 29 32 34 35 | syl3anc | |
37 | lmodgrp | |
|
38 | 5 37 | syl | |
39 | 2 23 6 | grpsubeq0 | |
40 | 38 39 | syl3an1 | |
41 | 26 36 40 | 3bitr3d | |
42 | 13 41 | sylibd | |
43 | 4 42 | impbid2 | |