Metamath Proof Explorer


Theorem ip2eq

Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses ip2eq.h ,˙=𝑖W
ip2eq.v V=BaseW
Assertion ip2eq WPreHilAVBVA=BxVx,˙A=x,˙B

Proof

Step Hyp Ref Expression
1 ip2eq.h ,˙=𝑖W
2 ip2eq.v V=BaseW
3 oveq2 A=Bx,˙A=x,˙B
4 3 ralrimivw A=BxVx,˙A=x,˙B
5 phllmod WPreHilWLMod
6 eqid -W=-W
7 2 6 lmodvsubcl WLModAVBVA-WBV
8 5 7 syl3an1 WPreHilAVBVA-WBV
9 oveq1 x=A-WBx,˙A=A-WB,˙A
10 oveq1 x=A-WBx,˙B=A-WB,˙B
11 9 10 eqeq12d x=A-WBx,˙A=x,˙BA-WB,˙A=A-WB,˙B
12 11 rspcv A-WBVxVx,˙A=x,˙BA-WB,˙A=A-WB,˙B
13 8 12 syl WPreHilAVBVxVx,˙A=x,˙BA-WB,˙A=A-WB,˙B
14 simp1 WPreHilAVBVWPreHil
15 simp2 WPreHilAVBVAV
16 simp3 WPreHilAVBVBV
17 eqid ScalarW=ScalarW
18 eqid -ScalarW=-ScalarW
19 17 1 2 6 18 ipsubdi WPreHilA-WBVAVBVA-WB,˙A-WB=A-WB,˙A-ScalarWA-WB,˙B
20 14 8 15 16 19 syl13anc WPreHilAVBVA-WB,˙A-WB=A-WB,˙A-ScalarWA-WB,˙B
21 20 eqeq1d WPreHilAVBVA-WB,˙A-WB=0ScalarWA-WB,˙A-ScalarWA-WB,˙B=0ScalarW
22 eqid 0ScalarW=0ScalarW
23 eqid 0W=0W
24 17 1 2 22 23 ipeq0 WPreHilA-WBVA-WB,˙A-WB=0ScalarWA-WB=0W
25 14 8 24 syl2anc WPreHilAVBVA-WB,˙A-WB=0ScalarWA-WB=0W
26 21 25 bitr3d WPreHilAVBVA-WB,˙A-ScalarWA-WB,˙B=0ScalarWA-WB=0W
27 5 3ad2ant1 WPreHilAVBVWLMod
28 17 lmodfgrp WLModScalarWGrp
29 27 28 syl WPreHilAVBVScalarWGrp
30 eqid BaseScalarW=BaseScalarW
31 17 1 2 30 ipcl WPreHilA-WBVAVA-WB,˙ABaseScalarW
32 14 8 15 31 syl3anc WPreHilAVBVA-WB,˙ABaseScalarW
33 17 1 2 30 ipcl WPreHilA-WBVBVA-WB,˙BBaseScalarW
34 14 8 16 33 syl3anc WPreHilAVBVA-WB,˙BBaseScalarW
35 30 22 18 grpsubeq0 ScalarWGrpA-WB,˙ABaseScalarWA-WB,˙BBaseScalarWA-WB,˙A-ScalarWA-WB,˙B=0ScalarWA-WB,˙A=A-WB,˙B
36 29 32 34 35 syl3anc WPreHilAVBVA-WB,˙A-ScalarWA-WB,˙B=0ScalarWA-WB,˙A=A-WB,˙B
37 lmodgrp WLModWGrp
38 5 37 syl WPreHilWGrp
39 2 23 6 grpsubeq0 WGrpAVBVA-WB=0WA=B
40 38 39 syl3an1 WPreHilAVBVA-WB=0WA=B
41 26 36 40 3bitr3d WPreHilAVBVA-WB,˙A=A-WB,˙BA=B
42 13 41 sylibd WPreHilAVBVxVx,˙A=x,˙BA=B
43 4 42 impbid2 WPreHilAVBVA=BxVx,˙A=x,˙B