Description: Multiplication of infinite sums. (Contributed by Scott Fenton, 18-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iprodmul.1 | |
|
iprodmul.2 | |
||
iprodmul.3 | |
||
iprodmul.4 | |
||
iprodmul.5 | |
||
iprodmul.6 | |
||
iprodmul.7 | |
||
iprodmul.8 | |
||
Assertion | iprodmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iprodmul.1 | |
|
2 | iprodmul.2 | |
|
3 | iprodmul.3 | |
|
4 | iprodmul.4 | |
|
5 | iprodmul.5 | |
|
6 | iprodmul.6 | |
|
7 | iprodmul.7 | |
|
8 | iprodmul.8 | |
|
9 | 4 5 | eqeltrd | |
10 | 7 8 | eqeltrd | |
11 | fveq2 | |
|
12 | fveq2 | |
|
13 | 11 12 | oveq12d | |
14 | eqid | |
|
15 | ovex | |
|
16 | 13 14 15 | fvmpt | |
17 | 16 | adantl | |
18 | 1 3 9 6 10 17 | ntrivcvgmul | |
19 | fveq2 | |
|
20 | fveq2 | |
|
21 | 19 20 | oveq12d | |
22 | 21 | cbvmptv | |
23 | seqeq3 | |
|
24 | 22 23 | ax-mp | |
25 | 24 | breq1i | |
26 | 25 | anbi2i | |
27 | 26 | exbii | |
28 | 27 | rexbii | |
29 | 18 28 | sylibr | |
30 | eqid | |
|
31 | fveq2 | |
|
32 | fveq2 | |
|
33 | 31 32 | oveq12d | |
34 | simpr | |
|
35 | 9 10 | mulcld | |
36 | 30 33 34 35 | fvmptd3 | |
37 | 4 7 | oveq12d | |
38 | 36 37 | eqtrd | |
39 | 5 8 | mulcld | |
40 | 1 2 3 4 5 | iprodclim2 | |
41 | seqex | |
|
42 | 41 | a1i | |
43 | 1 2 6 7 8 | iprodclim2 | |
44 | 1 2 9 | prodf | |
45 | 44 | ffvelcdmda | |
46 | 1 2 10 | prodf | |
47 | 46 | ffvelcdmda | |
48 | simpr | |
|
49 | 48 1 | eleqtrdi | |
50 | elfzuz | |
|
51 | 50 1 | eleqtrrdi | |
52 | 51 9 | sylan2 | |
53 | 52 | adantlr | |
54 | 51 10 | sylan2 | |
55 | 54 | adantlr | |
56 | 36 | adantlr | |
57 | 51 56 | sylan2 | |
58 | 49 53 55 57 | prodfmul | |
59 | 1 2 40 42 43 45 47 58 | climmul | |
60 | 1 2 29 38 39 59 | iprodclim | |