Metamath Proof Explorer


Theorem iprodmul

Description: Multiplication of infinite sums. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodmul.1 Z=M
iprodmul.2 φM
iprodmul.3 φnZyy0seqn×Fy
iprodmul.4 φkZFk=A
iprodmul.5 φkZA
iprodmul.6 φmZzz0seqm×Gz
iprodmul.7 φkZGk=B
iprodmul.8 φkZB
Assertion iprodmul φkZAB=kZAkZB

Proof

Step Hyp Ref Expression
1 iprodmul.1 Z=M
2 iprodmul.2 φM
3 iprodmul.3 φnZyy0seqn×Fy
4 iprodmul.4 φkZFk=A
5 iprodmul.5 φkZA
6 iprodmul.6 φmZzz0seqm×Gz
7 iprodmul.7 φkZGk=B
8 iprodmul.8 φkZB
9 4 5 eqeltrd φkZFk
10 7 8 eqeltrd φkZGk
11 fveq2 a=kFa=Fk
12 fveq2 a=kGa=Gk
13 11 12 oveq12d a=kFaGa=FkGk
14 eqid aZFaGa=aZFaGa
15 ovex FkGkV
16 13 14 15 fvmpt kZaZFaGak=FkGk
17 16 adantl φkZaZFaGak=FkGk
18 1 3 9 6 10 17 ntrivcvgmul φpZww0seqp×aZFaGaw
19 fveq2 m=aFm=Fa
20 fveq2 m=aGm=Ga
21 19 20 oveq12d m=aFmGm=FaGa
22 21 cbvmptv mZFmGm=aZFaGa
23 seqeq3 mZFmGm=aZFaGaseqp×mZFmGm=seqp×aZFaGa
24 22 23 ax-mp seqp×mZFmGm=seqp×aZFaGa
25 24 breq1i seqp×mZFmGmwseqp×aZFaGaw
26 25 anbi2i w0seqp×mZFmGmww0seqp×aZFaGaw
27 26 exbii ww0seqp×mZFmGmwww0seqp×aZFaGaw
28 27 rexbii pZww0seqp×mZFmGmwpZww0seqp×aZFaGaw
29 18 28 sylibr φpZww0seqp×mZFmGmw
30 eqid mZFmGm=mZFmGm
31 fveq2 m=kFm=Fk
32 fveq2 m=kGm=Gk
33 31 32 oveq12d m=kFmGm=FkGk
34 simpr φkZkZ
35 9 10 mulcld φkZFkGk
36 30 33 34 35 fvmptd3 φkZmZFmGmk=FkGk
37 4 7 oveq12d φkZFkGk=AB
38 36 37 eqtrd φkZmZFmGmk=AB
39 5 8 mulcld φkZAB
40 1 2 3 4 5 iprodclim2 φseqM×FkZA
41 seqex seqM×mZFmGmV
42 41 a1i φseqM×mZFmGmV
43 1 2 6 7 8 iprodclim2 φseqM×GkZB
44 1 2 9 prodf φseqM×F:Z
45 44 ffvelcdmda φjZseqM×Fj
46 1 2 10 prodf φseqM×G:Z
47 46 ffvelcdmda φjZseqM×Gj
48 simpr φjZjZ
49 48 1 eleqtrdi φjZjM
50 elfzuz kMjkM
51 50 1 eleqtrrdi kMjkZ
52 51 9 sylan2 φkMjFk
53 52 adantlr φjZkMjFk
54 51 10 sylan2 φkMjGk
55 54 adantlr φjZkMjGk
56 36 adantlr φjZkZmZFmGmk=FkGk
57 51 56 sylan2 φjZkMjmZFmGmk=FkGk
58 49 53 55 57 prodfmul φjZseqM×mZFmGmj=seqM×FjseqM×Gj
59 1 2 40 42 43 45 47 58 climmul φseqM×mZFmGmkZAkZB
60 1 2 29 38 39 59 iprodclim φkZAB=kZAkZB