| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iprodmul.1 |
|
| 2 |
|
iprodmul.2 |
|
| 3 |
|
iprodmul.3 |
|
| 4 |
|
iprodmul.4 |
|
| 5 |
|
iprodmul.5 |
|
| 6 |
|
iprodmul.6 |
|
| 7 |
|
iprodmul.7 |
|
| 8 |
|
iprodmul.8 |
|
| 9 |
4 5
|
eqeltrd |
|
| 10 |
7 8
|
eqeltrd |
|
| 11 |
|
fveq2 |
|
| 12 |
|
fveq2 |
|
| 13 |
11 12
|
oveq12d |
|
| 14 |
|
eqid |
|
| 15 |
|
ovex |
|
| 16 |
13 14 15
|
fvmpt |
|
| 17 |
16
|
adantl |
|
| 18 |
1 3 9 6 10 17
|
ntrivcvgmul |
|
| 19 |
|
fveq2 |
|
| 20 |
|
fveq2 |
|
| 21 |
19 20
|
oveq12d |
|
| 22 |
21
|
cbvmptv |
|
| 23 |
|
seqeq3 |
|
| 24 |
22 23
|
ax-mp |
|
| 25 |
24
|
breq1i |
|
| 26 |
25
|
anbi2i |
|
| 27 |
26
|
exbii |
|
| 28 |
27
|
rexbii |
|
| 29 |
18 28
|
sylibr |
|
| 30 |
|
eqid |
|
| 31 |
|
fveq2 |
|
| 32 |
|
fveq2 |
|
| 33 |
31 32
|
oveq12d |
|
| 34 |
|
simpr |
|
| 35 |
9 10
|
mulcld |
|
| 36 |
30 33 34 35
|
fvmptd3 |
|
| 37 |
4 7
|
oveq12d |
|
| 38 |
36 37
|
eqtrd |
|
| 39 |
5 8
|
mulcld |
|
| 40 |
1 2 3 4 5
|
iprodclim2 |
|
| 41 |
|
seqex |
|
| 42 |
41
|
a1i |
|
| 43 |
1 2 6 7 8
|
iprodclim2 |
|
| 44 |
1 2 9
|
prodf |
|
| 45 |
44
|
ffvelcdmda |
|
| 46 |
1 2 10
|
prodf |
|
| 47 |
46
|
ffvelcdmda |
|
| 48 |
|
simpr |
|
| 49 |
48 1
|
eleqtrdi |
|
| 50 |
|
elfzuz |
|
| 51 |
50 1
|
eleqtrrdi |
|
| 52 |
51 9
|
sylan2 |
|
| 53 |
52
|
adantlr |
|
| 54 |
51 10
|
sylan2 |
|
| 55 |
54
|
adantlr |
|
| 56 |
36
|
adantlr |
|
| 57 |
51 56
|
sylan2 |
|
| 58 |
49 53 55 57
|
prodfmul |
|
| 59 |
1 2 40 42 43 45 47 58
|
climmul |
|
| 60 |
1 2 29 38 39 59
|
iprodclim |
|