Description: The product of two non-trivially converging products converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrivcvgmul.1 | |
|
ntrivcvgmul.3 | |
||
ntrivcvgmul.4 | |
||
ntrivcvgmul.5 | |
||
ntrivcvgmul.6 | |
||
ntrivcvgmul.7 | |
||
Assertion | ntrivcvgmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrivcvgmul.1 | |
|
2 | ntrivcvgmul.3 | |
|
3 | ntrivcvgmul.4 | |
|
4 | ntrivcvgmul.5 | |
|
5 | ntrivcvgmul.6 | |
|
6 | ntrivcvgmul.7 | |
|
7 | exdistrv | |
|
8 | 7 | 2rexbii | |
9 | reeanv | |
|
10 | 8 9 | bitri | |
11 | 2 4 10 | sylanbrc | |
12 | uzssz | |
|
13 | 1 12 | eqsstri | |
14 | simp2l | |
|
15 | 13 14 | sselid | |
16 | 15 | zred | |
17 | simp2r | |
|
18 | 13 17 | sselid | |
19 | 18 | zred | |
20 | simpl2l | |
|
21 | simpl2r | |
|
22 | simp3ll | |
|
23 | 22 | adantr | |
24 | simp3rl | |
|
25 | 24 | adantr | |
26 | simp3lr | |
|
27 | 26 | adantr | |
28 | simp3rr | |
|
29 | 28 | adantr | |
30 | simpl1 | |
|
31 | 30 3 | sylan | |
32 | 30 5 | sylan | |
33 | simpr | |
|
34 | 30 6 | sylan | |
35 | 1 20 21 23 25 27 29 31 32 33 34 | ntrivcvgmullem | |
36 | simpl2r | |
|
37 | simpl2l | |
|
38 | 24 | adantr | |
39 | 22 | adantr | |
40 | 28 | adantr | |
41 | 26 | adantr | |
42 | simpl1 | |
|
43 | 42 5 | sylan | |
44 | 42 3 | sylan | |
45 | simpr | |
|
46 | 3 5 | mulcomd | |
47 | 6 46 | eqtrd | |
48 | 42 47 | sylan | |
49 | 1 36 37 38 39 40 41 43 44 45 48 | ntrivcvgmullem | |
50 | 16 19 35 49 | lecasei | |
51 | 50 | 3expia | |
52 | 51 | exlimdvv | |
53 | 52 | rexlimdvva | |
54 | 11 53 | mpd | |