| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrivcvgmul.1 |
|
| 2 |
|
ntrivcvgmul.3 |
|
| 3 |
|
ntrivcvgmul.4 |
|
| 4 |
|
ntrivcvgmul.5 |
|
| 5 |
|
ntrivcvgmul.6 |
|
| 6 |
|
ntrivcvgmul.7 |
|
| 7 |
|
exdistrv |
|
| 8 |
7
|
2rexbii |
|
| 9 |
|
reeanv |
|
| 10 |
8 9
|
bitri |
|
| 11 |
2 4 10
|
sylanbrc |
|
| 12 |
|
uzssz |
|
| 13 |
1 12
|
eqsstri |
|
| 14 |
|
simp2l |
|
| 15 |
13 14
|
sselid |
|
| 16 |
15
|
zred |
|
| 17 |
|
simp2r |
|
| 18 |
13 17
|
sselid |
|
| 19 |
18
|
zred |
|
| 20 |
|
simpl2l |
|
| 21 |
|
simpl2r |
|
| 22 |
|
simp3ll |
|
| 23 |
22
|
adantr |
|
| 24 |
|
simp3rl |
|
| 25 |
24
|
adantr |
|
| 26 |
|
simp3lr |
|
| 27 |
26
|
adantr |
|
| 28 |
|
simp3rr |
|
| 29 |
28
|
adantr |
|
| 30 |
|
simpl1 |
|
| 31 |
30 3
|
sylan |
|
| 32 |
30 5
|
sylan |
|
| 33 |
|
simpr |
|
| 34 |
30 6
|
sylan |
|
| 35 |
1 20 21 23 25 27 29 31 32 33 34
|
ntrivcvgmullem |
|
| 36 |
|
simpl2r |
|
| 37 |
|
simpl2l |
|
| 38 |
24
|
adantr |
|
| 39 |
22
|
adantr |
|
| 40 |
28
|
adantr |
|
| 41 |
26
|
adantr |
|
| 42 |
|
simpl1 |
|
| 43 |
42 5
|
sylan |
|
| 44 |
42 3
|
sylan |
|
| 45 |
|
simpr |
|
| 46 |
3 5
|
mulcomd |
|
| 47 |
6 46
|
eqtrd |
|
| 48 |
42 47
|
sylan |
|
| 49 |
1 36 37 38 39 40 41 43 44 45 48
|
ntrivcvgmullem |
|
| 50 |
16 19 35 49
|
lecasei |
|
| 51 |
50
|
3expia |
|
| 52 |
51
|
exlimdvv |
|
| 53 |
52
|
rexlimdvva |
|
| 54 |
11 53
|
mpd |
|