Step |
Hyp |
Ref |
Expression |
1 |
|
ntrivcvgmul.1 |
|
2 |
|
ntrivcvgmul.3 |
|
3 |
|
ntrivcvgmul.4 |
|
4 |
|
ntrivcvgmul.5 |
|
5 |
|
ntrivcvgmul.6 |
|
6 |
|
ntrivcvgmul.7 |
|
7 |
|
exdistrv |
|
8 |
7
|
2rexbii |
|
9 |
|
reeanv |
|
10 |
8 9
|
bitri |
|
11 |
2 4 10
|
sylanbrc |
|
12 |
|
uzssz |
|
13 |
1 12
|
eqsstri |
|
14 |
|
simp2l |
|
15 |
13 14
|
sselid |
|
16 |
15
|
zred |
|
17 |
|
simp2r |
|
18 |
13 17
|
sselid |
|
19 |
18
|
zred |
|
20 |
|
simpl2l |
|
21 |
|
simpl2r |
|
22 |
|
simp3ll |
|
23 |
22
|
adantr |
|
24 |
|
simp3rl |
|
25 |
24
|
adantr |
|
26 |
|
simp3lr |
|
27 |
26
|
adantr |
|
28 |
|
simp3rr |
|
29 |
28
|
adantr |
|
30 |
|
simpl1 |
|
31 |
30 3
|
sylan |
|
32 |
30 5
|
sylan |
|
33 |
|
simpr |
|
34 |
30 6
|
sylan |
|
35 |
1 20 21 23 25 27 29 31 32 33 34
|
ntrivcvgmullem |
|
36 |
|
simpl2r |
|
37 |
|
simpl2l |
|
38 |
24
|
adantr |
|
39 |
22
|
adantr |
|
40 |
28
|
adantr |
|
41 |
26
|
adantr |
|
42 |
|
simpl1 |
|
43 |
42 5
|
sylan |
|
44 |
42 3
|
sylan |
|
45 |
|
simpr |
|
46 |
3 5
|
mulcomd |
|
47 |
6 46
|
eqtrd |
|
48 |
42 47
|
sylan |
|
49 |
1 36 37 38 39 40 41 43 44 45 48
|
ntrivcvgmullem |
|
50 |
16 19 35 49
|
lecasei |
|
51 |
50
|
3expia |
|
52 |
51
|
exlimdvv |
|
53 |
52
|
rexlimdvva |
|
54 |
11 53
|
mpd |
|