Metamath Proof Explorer


Theorem ntrivcvgmul

Description: The product of two non-trivially converging products converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses ntrivcvgmul.1 Z=M
ntrivcvgmul.3 φnZyy0seqn×Fy
ntrivcvgmul.4 φkZFk
ntrivcvgmul.5 φmZzz0seqm×Gz
ntrivcvgmul.6 φkZGk
ntrivcvgmul.7 φkZHk=FkGk
Assertion ntrivcvgmul φpZww0seqp×Hw

Proof

Step Hyp Ref Expression
1 ntrivcvgmul.1 Z=M
2 ntrivcvgmul.3 φnZyy0seqn×Fy
3 ntrivcvgmul.4 φkZFk
4 ntrivcvgmul.5 φmZzz0seqm×Gz
5 ntrivcvgmul.6 φkZGk
6 ntrivcvgmul.7 φkZHk=FkGk
7 exdistrv yzy0seqn×Fyz0seqm×Gzyy0seqn×Fyzz0seqm×Gz
8 7 2rexbii nZmZyzy0seqn×Fyz0seqm×GznZmZyy0seqn×Fyzz0seqm×Gz
9 reeanv nZmZyy0seqn×Fyzz0seqm×GznZyy0seqn×FymZzz0seqm×Gz
10 8 9 bitri nZmZyzy0seqn×Fyz0seqm×GznZyy0seqn×FymZzz0seqm×Gz
11 2 4 10 sylanbrc φnZmZyzy0seqn×Fyz0seqm×Gz
12 uzssz M
13 1 12 eqsstri Z
14 simp2l φnZmZy0seqn×Fyz0seqm×GznZ
15 13 14 sselid φnZmZy0seqn×Fyz0seqm×Gzn
16 15 zred φnZmZy0seqn×Fyz0seqm×Gzn
17 simp2r φnZmZy0seqn×Fyz0seqm×GzmZ
18 13 17 sselid φnZmZy0seqn×Fyz0seqm×Gzm
19 18 zred φnZmZy0seqn×Fyz0seqm×Gzm
20 simpl2l φnZmZy0seqn×Fyz0seqm×GznmnZ
21 simpl2r φnZmZy0seqn×Fyz0seqm×GznmmZ
22 simp3ll φnZmZy0seqn×Fyz0seqm×Gzy0
23 22 adantr φnZmZy0seqn×Fyz0seqm×Gznmy0
24 simp3rl φnZmZy0seqn×Fyz0seqm×Gzz0
25 24 adantr φnZmZy0seqn×Fyz0seqm×Gznmz0
26 simp3lr φnZmZy0seqn×Fyz0seqm×Gzseqn×Fy
27 26 adantr φnZmZy0seqn×Fyz0seqm×Gznmseqn×Fy
28 simp3rr φnZmZy0seqn×Fyz0seqm×Gzseqm×Gz
29 28 adantr φnZmZy0seqn×Fyz0seqm×Gznmseqm×Gz
30 simpl1 φnZmZy0seqn×Fyz0seqm×Gznmφ
31 30 3 sylan φnZmZy0seqn×Fyz0seqm×GznmkZFk
32 30 5 sylan φnZmZy0seqn×Fyz0seqm×GznmkZGk
33 simpr φnZmZy0seqn×Fyz0seqm×Gznmnm
34 30 6 sylan φnZmZy0seqn×Fyz0seqm×GznmkZHk=FkGk
35 1 20 21 23 25 27 29 31 32 33 34 ntrivcvgmullem φnZmZy0seqn×Fyz0seqm×GznmpZww0seqp×Hw
36 simpl2r φnZmZy0seqn×Fyz0seqm×GzmnmZ
37 simpl2l φnZmZy0seqn×Fyz0seqm×GzmnnZ
38 24 adantr φnZmZy0seqn×Fyz0seqm×Gzmnz0
39 22 adantr φnZmZy0seqn×Fyz0seqm×Gzmny0
40 28 adantr φnZmZy0seqn×Fyz0seqm×Gzmnseqm×Gz
41 26 adantr φnZmZy0seqn×Fyz0seqm×Gzmnseqn×Fy
42 simpl1 φnZmZy0seqn×Fyz0seqm×Gzmnφ
43 42 5 sylan φnZmZy0seqn×Fyz0seqm×GzmnkZGk
44 42 3 sylan φnZmZy0seqn×Fyz0seqm×GzmnkZFk
45 simpr φnZmZy0seqn×Fyz0seqm×Gzmnmn
46 3 5 mulcomd φkZFkGk=GkFk
47 6 46 eqtrd φkZHk=GkFk
48 42 47 sylan φnZmZy0seqn×Fyz0seqm×GzmnkZHk=GkFk
49 1 36 37 38 39 40 41 43 44 45 48 ntrivcvgmullem φnZmZy0seqn×Fyz0seqm×GzmnpZww0seqp×Hw
50 16 19 35 49 lecasei φnZmZy0seqn×Fyz0seqm×GzpZww0seqp×Hw
51 50 3expia φnZmZy0seqn×Fyz0seqm×GzpZww0seqp×Hw
52 51 exlimdvv φnZmZyzy0seqn×Fyz0seqm×GzpZww0seqp×Hw
53 52 rexlimdvva φnZmZyzy0seqn×Fyz0seqm×GzpZww0seqp×Hw
54 11 53 mpd φpZww0seqp×Hw