Description: A family is the closed sets of a topology iff it is a Moore collection and closed under finite union. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | iscldtop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fncld | |
|
2 | fnfun | |
|
3 | 1 2 | ax-mp | |
4 | fvelima | |
|
5 | 3 4 | mpan | |
6 | cldmreon | |
|
7 | topontop | |
|
8 | 0cld | |
|
9 | 7 8 | syl | |
10 | uncld | |
|
11 | 10 | adantl | |
12 | 11 | ralrimivva | |
13 | 6 9 12 | 3jca | |
14 | eleq1 | |
|
15 | eleq2 | |
|
16 | eleq2 | |
|
17 | 16 | raleqbi1dv | |
18 | 17 | raleqbi1dv | |
19 | 14 15 18 | 3anbi123d | |
20 | 13 19 | syl5ibcom | |
21 | 20 | rexlimiv | |
22 | 5 21 | syl | |
23 | simp1 | |
|
24 | simp2 | |
|
25 | uneq1 | |
|
26 | 25 | eleq1d | |
27 | uneq2 | |
|
28 | 27 | eleq1d | |
29 | 26 28 | rspc2v | |
30 | 29 | com12 | |
31 | 30 | 3ad2ant3 | |
32 | 31 | 3impib | |
33 | eqid | |
|
34 | 23 24 32 33 | mretopd | |
35 | 34 | simprd | |
36 | 34 | simpld | |
37 | 7 | ssriv | |
38 | 1 | fndmi | |
39 | 37 38 | sseqtrri | |
40 | funfvima2 | |
|
41 | 3 39 40 | mp2an | |
42 | 36 41 | syl | |
43 | 35 42 | eqeltrd | |
44 | 22 43 | impbii | |