Metamath Proof Explorer


Theorem iscldtop

Description: A family is the closed sets of a topology iff it is a Moore collection and closed under finite union. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion iscldtop KClsdTopOnBKMooreBKxKyKxyK

Proof

Step Hyp Ref Expression
1 fncld ClsdFnTop
2 fnfun ClsdFnTopFunClsd
3 1 2 ax-mp FunClsd
4 fvelima FunClsdKClsdTopOnBaTopOnBClsda=K
5 3 4 mpan KClsdTopOnBaTopOnBClsda=K
6 cldmreon aTopOnBClsdaMooreB
7 topontop aTopOnBaTop
8 0cld aTopClsda
9 7 8 syl aTopOnBClsda
10 uncld xClsdayClsdaxyClsda
11 10 adantl aTopOnBxClsdayClsdaxyClsda
12 11 ralrimivva aTopOnBxClsdayClsdaxyClsda
13 6 9 12 3jca aTopOnBClsdaMooreBClsdaxClsdayClsdaxyClsda
14 eleq1 Clsda=KClsdaMooreBKMooreB
15 eleq2 Clsda=KClsdaK
16 eleq2 Clsda=KxyClsdaxyK
17 16 raleqbi1dv Clsda=KyClsdaxyClsdayKxyK
18 17 raleqbi1dv Clsda=KxClsdayClsdaxyClsdaxKyKxyK
19 14 15 18 3anbi123d Clsda=KClsdaMooreBClsdaxClsdayClsdaxyClsdaKMooreBKxKyKxyK
20 13 19 syl5ibcom aTopOnBClsda=KKMooreBKxKyKxyK
21 20 rexlimiv aTopOnBClsda=KKMooreBKxKyKxyK
22 5 21 syl KClsdTopOnBKMooreBKxKyKxyK
23 simp1 KMooreBKxKyKxyKKMooreB
24 simp2 KMooreBKxKyKxyKK
25 uneq1 x=bxy=by
26 25 eleq1d x=bxyKbyK
27 uneq2 y=cby=bc
28 27 eleq1d y=cbyKbcK
29 26 28 rspc2v bKcKxKyKxyKbcK
30 29 com12 xKyKxyKbKcKbcK
31 30 3ad2ant3 KMooreBKxKyKxyKbKcKbcK
32 31 3impib KMooreBKxKyKxyKbKcKbcK
33 eqid a𝒫B|BaK=a𝒫B|BaK
34 23 24 32 33 mretopd KMooreBKxKyKxyKa𝒫B|BaKTopOnBK=Clsda𝒫B|BaK
35 34 simprd KMooreBKxKyKxyKK=Clsda𝒫B|BaK
36 34 simpld KMooreBKxKyKxyKa𝒫B|BaKTopOnB
37 7 ssriv TopOnBTop
38 1 fndmi domClsd=Top
39 37 38 sseqtrri TopOnBdomClsd
40 funfvima2 FunClsdTopOnBdomClsda𝒫B|BaKTopOnBClsda𝒫B|BaKClsdTopOnB
41 3 39 40 mp2an a𝒫B|BaKTopOnBClsda𝒫B|BaKClsdTopOnB
42 36 41 syl KMooreBKxKyKxyKClsda𝒫B|BaKClsdTopOnB
43 35 42 eqeltrd KMooreBKxKyKxyKKClsdTopOnB
44 22 43 impbii KClsdTopOnBKMooreBKxKyKxyK