Description: Directed sets may be defined in terms of finite subsets. Again, without nonemptiness we would need to restrict to nonempty subsets here. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drsbn0.b | |
|
drsdirfi.l | |
||
Assertion | isdrs2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drsbn0.b | |
|
2 | drsdirfi.l | |
|
3 | drsprs | |
|
4 | simpl | |
|
5 | elinel1 | |
|
6 | 5 | elpwid | |
7 | 6 | adantl | |
8 | elinel2 | |
|
9 | 8 | adantl | |
10 | 1 2 | drsdirfi | |
11 | 4 7 9 10 | syl3anc | |
12 | 11 | ralrimiva | |
13 | 3 12 | jca | |
14 | simpl | |
|
15 | 0elpw | |
|
16 | 0fin | |
|
17 | 15 16 | elini | |
18 | raleq | |
|
19 | 18 | rexbidv | |
20 | 19 | rspcv | |
21 | 17 20 | ax-mp | |
22 | rexn0 | |
|
23 | 21 22 | syl | |
24 | 23 | adantl | |
25 | raleq | |
|
26 | 25 | rexbidv | |
27 | simplr | |
|
28 | prelpwi | |
|
29 | prfi | |
|
30 | 29 | a1i | |
31 | 28 30 | elind | |
32 | 31 | adantl | |
33 | 26 27 32 | rspcdva | |
34 | vex | |
|
35 | vex | |
|
36 | breq1 | |
|
37 | breq1 | |
|
38 | 34 35 36 37 | ralpr | |
39 | 38 | rexbii | |
40 | 33 39 | sylib | |
41 | 40 | ralrimivva | |
42 | 1 2 | isdrs | |
43 | 14 24 41 42 | syl3anbrc | |
44 | 13 43 | impbii | |