Description: A Hilbert space is a complete subcomplex pre-Hilbert space over RR or CC . (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlress.f | |
|
hlress.k | |
||
Assertion | ishl2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlress.f | |
|
2 | hlress.k | |
|
3 | ishl | |
|
4 | df-3an | |
|
5 | 3ancomb | |
|
6 | cphnvc | |
|
7 | 1 | isbn | |
8 | 3anass | |
|
9 | 7 8 | bitri | |
10 | 9 | baib | |
11 | 6 10 | syl | |
12 | 1 2 | cphsca | |
13 | 12 | eleq1d | |
14 | 1 2 | cphsubrg | |
15 | cphlvec | |
|
16 | 1 | lvecdrng | |
17 | 15 16 | syl | |
18 | 12 17 | eqeltrrd | |
19 | eqid | |
|
20 | 19 | cncdrg | |
21 | 20 | 3expia | |
22 | 14 18 21 | syl2anc | |
23 | elpri | |
|
24 | oveq2 | |
|
25 | eqid | |
|
26 | 25 | recld2 | |
27 | cncms | |
|
28 | ax-resscn | |
|
29 | eqid | |
|
30 | cnfldbas | |
|
31 | 29 30 25 | cmsss | |
32 | 27 28 31 | mp2an | |
33 | 26 32 | mpbir | |
34 | 24 33 | eqeltrdi | |
35 | oveq2 | |
|
36 | 30 | ressid | |
37 | 27 36 | ax-mp | |
38 | 37 27 | eqeltri | |
39 | 35 38 | eqeltrdi | |
40 | 34 39 | jaoi | |
41 | 23 40 | syl | |
42 | 22 41 | impbid1 | |
43 | 13 42 | bitrd | |
44 | 43 | anbi2d | |
45 | 11 44 | bitrd | |
46 | 45 | pm5.32ri | |
47 | 4 5 46 | 3bitr4ri | |
48 | 3 47 | bitri | |