Metamath Proof Explorer


Theorem ishl2

Description: A Hilbert space is a complete subcomplex pre-Hilbert space over RR or CC . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses hlress.f F=ScalarW
hlress.k K=BaseF
Assertion ishl2 WℂHilWCMetSpWCPreHilK

Proof

Step Hyp Ref Expression
1 hlress.f F=ScalarW
2 hlress.k K=BaseF
3 ishl WℂHilWBanWCPreHil
4 df-3an WCMetSpKWCPreHilWCMetSpKWCPreHil
5 3ancomb WCMetSpWCPreHilKWCMetSpKWCPreHil
6 cphnvc WCPreHilWNrmVec
7 1 isbn WBanWNrmVecWCMetSpFCMetSp
8 3anass WNrmVecWCMetSpFCMetSpWNrmVecWCMetSpFCMetSp
9 7 8 bitri WBanWNrmVecWCMetSpFCMetSp
10 9 baib WNrmVecWBanWCMetSpFCMetSp
11 6 10 syl WCPreHilWBanWCMetSpFCMetSp
12 1 2 cphsca WCPreHilF=fld𝑠K
13 12 eleq1d WCPreHilFCMetSpfld𝑠KCMetSp
14 1 2 cphsubrg WCPreHilKSubRingfld
15 cphlvec WCPreHilWLVec
16 1 lvecdrng WLVecFDivRing
17 15 16 syl WCPreHilFDivRing
18 12 17 eqeltrrd WCPreHilfld𝑠KDivRing
19 eqid fld𝑠K=fld𝑠K
20 19 cncdrg KSubRingfldfld𝑠KDivRingfld𝑠KCMetSpK
21 20 3expia KSubRingfldfld𝑠KDivRingfld𝑠KCMetSpK
22 14 18 21 syl2anc WCPreHilfld𝑠KCMetSpK
23 elpri KK=K=
24 oveq2 K=fld𝑠K=fld𝑠
25 eqid TopOpenfld=TopOpenfld
26 25 recld2 ClsdTopOpenfld
27 cncms fldCMetSp
28 ax-resscn
29 eqid fld𝑠=fld𝑠
30 cnfldbas =Basefld
31 29 30 25 cmsss fldCMetSpfld𝑠CMetSpClsdTopOpenfld
32 27 28 31 mp2an fld𝑠CMetSpClsdTopOpenfld
33 26 32 mpbir fld𝑠CMetSp
34 24 33 eqeltrdi K=fld𝑠KCMetSp
35 oveq2 K=fld𝑠K=fld𝑠
36 30 ressid fldCMetSpfld𝑠=fld
37 27 36 ax-mp fld𝑠=fld
38 37 27 eqeltri fld𝑠CMetSp
39 35 38 eqeltrdi K=fld𝑠KCMetSp
40 34 39 jaoi K=K=fld𝑠KCMetSp
41 23 40 syl Kfld𝑠KCMetSp
42 22 41 impbid1 WCPreHilfld𝑠KCMetSpK
43 13 42 bitrd WCPreHilFCMetSpK
44 43 anbi2d WCPreHilWCMetSpFCMetSpWCMetSpK
45 11 44 bitrd WCPreHilWBanWCMetSpK
46 45 pm5.32ri WBanWCPreHilWCMetSpKWCPreHil
47 4 5 46 3bitr4ri WBanWCPreHilWCMetSpWCPreHilK
48 3 47 bitri WℂHilWCMetSpWCPreHilK