Metamath Proof Explorer


Theorem isinftm

Description: Express x is infinitesimal with respect to y for a structure W . (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses inftm.b B=BaseW
inftm.0 0˙=0W
inftm.x ·˙=W
inftm.l <˙=<W
Assertion isinftm WVXBYBXWY0˙<˙Xnn·˙X<˙Y

Proof

Step Hyp Ref Expression
1 inftm.b B=BaseW
2 inftm.0 0˙=0W
3 inftm.x ·˙=W
4 inftm.l <˙=<W
5 eleq1 x=XxBXB
6 eleq1 y=YyBYB
7 5 6 bi2anan9 x=Xy=YxByBXBYB
8 simpl x=Xy=Yx=X
9 8 breq2d x=Xy=Y0˙<˙x0˙<˙X
10 8 oveq2d x=Xy=Yn·˙x=n·˙X
11 simpr x=Xy=Yy=Y
12 10 11 breq12d x=Xy=Yn·˙x<˙yn·˙X<˙Y
13 12 ralbidv x=Xy=Ynn·˙x<˙ynn·˙X<˙Y
14 9 13 anbi12d x=Xy=Y0˙<˙xnn·˙x<˙y0˙<˙Xnn·˙X<˙Y
15 7 14 anbi12d x=Xy=YxByB0˙<˙xnn·˙x<˙yXBYB0˙<˙Xnn·˙X<˙Y
16 eqid xy|xByB0˙<˙xnn·˙x<˙y=xy|xByB0˙<˙xnn·˙x<˙y
17 15 16 brabga XBYBXxy|xByB0˙<˙xnn·˙x<˙yYXBYB0˙<˙Xnn·˙X<˙Y
18 17 3adant1 WVXBYBXxy|xByB0˙<˙xnn·˙x<˙yYXBYB0˙<˙Xnn·˙X<˙Y
19 elex WVWV
20 19 3ad2ant1 WVXBYBWV
21 fveq2 w=WBasew=BaseW
22 21 1 eqtr4di w=WBasew=B
23 22 eleq2d w=WxBasewxB
24 22 eleq2d w=WyBasewyB
25 23 24 anbi12d w=WxBasewyBasewxByB
26 fveq2 w=W0w=0W
27 26 2 eqtr4di w=W0w=0˙
28 fveq2 w=W<w=<W
29 28 4 eqtr4di w=W<w=<˙
30 eqidd w=Wx=x
31 27 29 30 breq123d w=W0w<wx0˙<˙x
32 fveq2 w=Ww=W
33 32 3 eqtr4di w=Ww=·˙
34 33 oveqd w=Wnwx=n·˙x
35 eqidd w=Wy=y
36 34 29 35 breq123d w=Wnwx<wyn·˙x<˙y
37 36 ralbidv w=Wnnwx<wynn·˙x<˙y
38 31 37 anbi12d w=W0w<wxnnwx<wy0˙<˙xnn·˙x<˙y
39 25 38 anbi12d w=WxBasewyBasew0w<wxnnwx<wyxByB0˙<˙xnn·˙x<˙y
40 39 opabbidv w=Wxy|xBasewyBasew0w<wxnnwx<wy=xy|xByB0˙<˙xnn·˙x<˙y
41 df-inftm =wVxy|xBasewyBasew0w<wxnnwx<wy
42 1 fvexi BV
43 42 42 xpex B×BV
44 opabssxp xy|xByB0˙<˙xnn·˙x<˙yB×B
45 43 44 ssexi xy|xByB0˙<˙xnn·˙x<˙yV
46 40 41 45 fvmpt WVW=xy|xByB0˙<˙xnn·˙x<˙y
47 20 46 syl WVXBYBW=xy|xByB0˙<˙xnn·˙x<˙y
48 47 breqd WVXBYBXWYXxy|xByB0˙<˙xnn·˙x<˙yY
49 3simpc WVXBYBXBYB
50 49 biantrurd WVXBYB0˙<˙Xnn·˙X<˙YXBYB0˙<˙Xnn·˙X<˙Y
51 18 48 50 3bitr4d WVXBYBXWY0˙<˙Xnn·˙X<˙Y