Description: Express x is infinitesimal with respect to y for a structure W . (Contributed by Thierry Arnoux, 30-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | inftm.b | |
|
inftm.0 | |
||
inftm.x | |
||
inftm.l | |
||
Assertion | isinftm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inftm.b | |
|
2 | inftm.0 | |
|
3 | inftm.x | |
|
4 | inftm.l | |
|
5 | eleq1 | |
|
6 | eleq1 | |
|
7 | 5 6 | bi2anan9 | |
8 | simpl | |
|
9 | 8 | breq2d | |
10 | 8 | oveq2d | |
11 | simpr | |
|
12 | 10 11 | breq12d | |
13 | 12 | ralbidv | |
14 | 9 13 | anbi12d | |
15 | 7 14 | anbi12d | |
16 | eqid | |
|
17 | 15 16 | brabga | |
18 | 17 | 3adant1 | |
19 | elex | |
|
20 | 19 | 3ad2ant1 | |
21 | fveq2 | |
|
22 | 21 1 | eqtr4di | |
23 | 22 | eleq2d | |
24 | 22 | eleq2d | |
25 | 23 24 | anbi12d | |
26 | fveq2 | |
|
27 | 26 2 | eqtr4di | |
28 | fveq2 | |
|
29 | 28 4 | eqtr4di | |
30 | eqidd | |
|
31 | 27 29 30 | breq123d | |
32 | fveq2 | |
|
33 | 32 3 | eqtr4di | |
34 | 33 | oveqd | |
35 | eqidd | |
|
36 | 34 29 35 | breq123d | |
37 | 36 | ralbidv | |
38 | 31 37 | anbi12d | |
39 | 25 38 | anbi12d | |
40 | 39 | opabbidv | |
41 | df-inftm | |
|
42 | 1 | fvexi | |
43 | 42 42 | xpex | |
44 | opabssxp | |
|
45 | 43 44 | ssexi | |
46 | 40 41 45 | fvmpt | |
47 | 20 46 | syl | |
48 | 47 | breqd | |
49 | 3simpc | |
|
50 | 49 | biantrurd | |
51 | 18 48 50 | 3bitr4d | |