Metamath Proof Explorer


Theorem islpolN

Description: The predicate "is a polarity". (Contributed by NM, 24-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lpolset.v V=BaseW
lpolset.s S=LSubSpW
lpolset.z 0˙=0W
lpolset.a A=LSAtomsW
lpolset.h H=LSHypW
lpolset.p P=LPolW
Assertion islpolN WX˙P˙:𝒫VS˙V=0˙xyxVyVxy˙y˙xxA˙xH˙˙x=x

Proof

Step Hyp Ref Expression
1 lpolset.v V=BaseW
2 lpolset.s S=LSubSpW
3 lpolset.z 0˙=0W
4 lpolset.a A=LSAtomsW
5 lpolset.h H=LSHypW
6 lpolset.p P=LPolW
7 1 2 3 4 5 6 lpolsetN WXP=oS𝒫V|oV=0˙xyxVyVxyoyoxxAoxHoox=x
8 7 eleq2d WX˙P˙oS𝒫V|oV=0˙xyxVyVxyoyoxxAoxHoox=x
9 fveq1 o=˙oV=˙V
10 9 eqeq1d o=˙oV=0˙˙V=0˙
11 fveq1 o=˙oy=˙y
12 fveq1 o=˙ox=˙x
13 11 12 sseq12d o=˙oyox˙y˙x
14 13 imbi2d o=˙xVyVxyoyoxxVyVxy˙y˙x
15 14 2albidv o=˙xyxVyVxyoyoxxyxVyVxy˙y˙x
16 12 eleq1d o=˙oxH˙xH
17 id o=˙o=˙
18 17 12 fveq12d o=˙oox=˙˙x
19 18 eqeq1d o=˙oox=x˙˙x=x
20 16 19 anbi12d o=˙oxHoox=x˙xH˙˙x=x
21 20 ralbidv o=˙xAoxHoox=xxA˙xH˙˙x=x
22 10 15 21 3anbi123d o=˙oV=0˙xyxVyVxyoyoxxAoxHoox=x˙V=0˙xyxVyVxy˙y˙xxA˙xH˙˙x=x
23 22 elrab ˙oS𝒫V|oV=0˙xyxVyVxyoyoxxAoxHoox=x˙S𝒫V˙V=0˙xyxVyVxy˙y˙xxA˙xH˙˙x=x
24 2 fvexi SV
25 1 fvexi VV
26 25 pwex 𝒫VV
27 24 26 elmap ˙S𝒫V˙:𝒫VS
28 27 anbi1i ˙S𝒫V˙V=0˙xyxVyVxy˙y˙xxA˙xH˙˙x=x˙:𝒫VS˙V=0˙xyxVyVxy˙y˙xxA˙xH˙˙x=x
29 23 28 bitri ˙oS𝒫V|oV=0˙xyxVyVxyoyoxxAoxHoox=x˙:𝒫VS˙V=0˙xyxVyVxy˙y˙xxA˙xH˙˙x=x
30 8 29 bitrdi WX˙P˙:𝒫VS˙V=0˙xyxVyVxy˙y˙xxA˙xH˙˙x=x