Metamath Proof Explorer


Theorem islvol2aN

Description: The predicate "is a lattice volume". (Contributed by NM, 16-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses islvol2a.l ˙=K
islvol2a.j ˙=joinK
islvol2a.a A=AtomsK
islvol2a.v V=LVolsK
Assertion islvol2aN KHLPAQARASAP˙Q˙R˙SVPQ¬R˙P˙Q¬S˙P˙Q˙R

Proof

Step Hyp Ref Expression
1 islvol2a.l ˙=K
2 islvol2a.j ˙=joinK
3 islvol2a.a A=AtomsK
4 islvol2a.v V=LVolsK
5 oveq1 P=QP˙Q=Q˙Q
6 simpl1 KHLPAQARASAKHL
7 simpl3 KHLPAQARASAQA
8 2 3 hlatjidm KHLQAQ˙Q=Q
9 6 7 8 syl2anc KHLPAQARASAQ˙Q=Q
10 5 9 sylan9eqr KHLPAQARASAP=QP˙Q=Q
11 10 oveq1d KHLPAQARASAP=QP˙Q˙R=Q˙R
12 11 oveq1d KHLPAQARASAP=QP˙Q˙R˙S=Q˙R˙S
13 simprl KHLPAQARASARA
14 simprr KHLPAQARASASA
15 2 3 4 3atnelvolN KHLQARASA¬Q˙R˙SV
16 6 7 13 14 15 syl13anc KHLPAQARASA¬Q˙R˙SV
17 16 adantr KHLPAQARASAP=Q¬Q˙R˙SV
18 12 17 eqneltrd KHLPAQARASAP=Q¬P˙Q˙R˙SV
19 18 ex KHLPAQARASAP=Q¬P˙Q˙R˙SV
20 19 necon2ad KHLPAQARASAP˙Q˙R˙SVPQ
21 6 hllatd KHLPAQARASAKLat
22 eqid BaseK=BaseK
23 22 3 atbase RARBaseK
24 23 ad2antrl KHLPAQARASARBaseK
25 22 2 3 hlatjcl KHLPAQAP˙QBaseK
26 25 adantr KHLPAQARASAP˙QBaseK
27 22 1 2 latleeqj2 KLatRBaseKP˙QBaseKR˙P˙QP˙Q˙R=P˙Q
28 21 24 26 27 syl3anc KHLPAQARASAR˙P˙QP˙Q˙R=P˙Q
29 simpl2 KHLPAQARASAPA
30 2 3 4 3atnelvolN KHLPAQASA¬P˙Q˙SV
31 6 29 7 14 30 syl13anc KHLPAQARASA¬P˙Q˙SV
32 oveq1 P˙Q˙R=P˙QP˙Q˙R˙S=P˙Q˙S
33 32 eleq1d P˙Q˙R=P˙QP˙Q˙R˙SVP˙Q˙SV
34 33 notbid P˙Q˙R=P˙Q¬P˙Q˙R˙SV¬P˙Q˙SV
35 31 34 syl5ibrcom KHLPAQARASAP˙Q˙R=P˙Q¬P˙Q˙R˙SV
36 28 35 sylbid KHLPAQARASAR˙P˙Q¬P˙Q˙R˙SV
37 36 con2d KHLPAQARASAP˙Q˙R˙SV¬R˙P˙Q
38 22 3 atbase SASBaseK
39 38 ad2antll KHLPAQARASASBaseK
40 22 2 latjcl KLatP˙QBaseKRBaseKP˙Q˙RBaseK
41 21 26 24 40 syl3anc KHLPAQARASAP˙Q˙RBaseK
42 22 1 2 latleeqj2 KLatSBaseKP˙Q˙RBaseKS˙P˙Q˙RP˙Q˙R˙S=P˙Q˙R
43 21 39 41 42 syl3anc KHLPAQARASAS˙P˙Q˙RP˙Q˙R˙S=P˙Q˙R
44 2 3 4 3atnelvolN KHLPAQARA¬P˙Q˙RV
45 6 29 7 13 44 syl13anc KHLPAQARASA¬P˙Q˙RV
46 eleq1 P˙Q˙R˙S=P˙Q˙RP˙Q˙R˙SVP˙Q˙RV
47 46 notbid P˙Q˙R˙S=P˙Q˙R¬P˙Q˙R˙SV¬P˙Q˙RV
48 45 47 syl5ibrcom KHLPAQARASAP˙Q˙R˙S=P˙Q˙R¬P˙Q˙R˙SV
49 43 48 sylbid KHLPAQARASAS˙P˙Q˙R¬P˙Q˙R˙SV
50 49 con2d KHLPAQARASAP˙Q˙R˙SV¬S˙P˙Q˙R
51 20 37 50 3jcad KHLPAQARASAP˙Q˙R˙SVPQ¬R˙P˙Q¬S˙P˙Q˙R
52 1 2 3 4 lvoli2 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙SV
53 52 3expia KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙SV
54 51 53 impbid KHLPAQARASAP˙Q˙R˙SVPQ¬R˙P˙Q¬S˙P˙Q˙R