Metamath Proof Explorer


Theorem ismfs

Description: A formal system is a tuple <. mCN , mVR , mType , mVT , mTC , mAx >. such that: mCN and mVR are disjoint; mType is a function from mVR to mVT ; mVT is a subset of mTC ; mAx is a set of statements; and for each variable typecode, there are infinitely many variables of that type. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses ismfs.c C=mCNT
ismfs.v V=mVRT
ismfs.y Y=mTypeT
ismfs.f F=mVTT
ismfs.k K=mTCT
ismfs.a A=mAxT
ismfs.s S=mStatT
Assertion ismfs TWTmFSCV=Y:VKASvF¬Y-1vFin

Proof

Step Hyp Ref Expression
1 ismfs.c C=mCNT
2 ismfs.v V=mVRT
3 ismfs.y Y=mTypeT
4 ismfs.f F=mVTT
5 ismfs.k K=mTCT
6 ismfs.a A=mAxT
7 ismfs.s S=mStatT
8 fveq2 t=TmCNt=mCNT
9 8 1 eqtr4di t=TmCNt=C
10 fveq2 t=TmVRt=mVRT
11 10 2 eqtr4di t=TmVRt=V
12 9 11 ineq12d t=TmCNtmVRt=CV
13 12 eqeq1d t=TmCNtmVRt=CV=
14 fveq2 t=TmTypet=mTypeT
15 14 3 eqtr4di t=TmTypet=Y
16 fveq2 t=TmTCt=mTCT
17 16 5 eqtr4di t=TmTCt=K
18 15 11 17 feq123d t=TmTypet:mVRtmTCtY:VK
19 13 18 anbi12d t=TmCNtmVRt=mTypet:mVRtmTCtCV=Y:VK
20 fveq2 t=TmAxt=mAxT
21 20 6 eqtr4di t=TmAxt=A
22 fveq2 t=TmStatt=mStatT
23 22 7 eqtr4di t=TmStatt=S
24 21 23 sseq12d t=TmAxtmStattAS
25 fveq2 t=TmVTt=mVTT
26 25 4 eqtr4di t=TmVTt=F
27 15 cnveqd t=TmTypet-1=Y-1
28 27 imaeq1d t=TmTypet-1v=Y-1v
29 28 eleq1d t=TmTypet-1vFinY-1vFin
30 29 notbid t=T¬mTypet-1vFin¬Y-1vFin
31 26 30 raleqbidv t=TvmVTt¬mTypet-1vFinvF¬Y-1vFin
32 24 31 anbi12d t=TmAxtmStattvmVTt¬mTypet-1vFinASvF¬Y-1vFin
33 19 32 anbi12d t=TmCNtmVRt=mTypet:mVRtmTCtmAxtmStattvmVTt¬mTypet-1vFinCV=Y:VKASvF¬Y-1vFin
34 df-mfs mFS=t|mCNtmVRt=mTypet:mVRtmTCtmAxtmStattvmVTt¬mTypet-1vFin
35 33 34 elab2g TWTmFSCV=Y:VKASvF¬Y-1vFin