Metamath Proof Explorer


Theorem ismnu

Description: The hypothesis of this theorem defines a class M of sets that we temporarily call "minimal universes", and which will turn out in grumnueq to be exactly Grothendicek universes. Minimal universes are sets which satisfy the predicate on y in rr-groth , except for the x e. y clause.

A minimal universe is closed under subsets ( mnussd ), powersets ( mnupwd ), and an operation which is similar to a combination of collection and union ( mnuop3d ), from which closure under pairing ( mnuprd ), unions ( mnuunid ), and function ranges ( mnurnd ) can be deduced, from which equivalence with Grothendieck universes ( grumnueq ) can be deduced. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypothesis ismnu.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
Assertion ismnu U V U M z U 𝒫 z U f w U 𝒫 z w i z v U i v v f u f i u u w

Proof

Step Hyp Ref Expression
1 ismnu.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 simpr k = U l = z l = z
3 2 pweqd k = U l = z 𝒫 l = 𝒫 z
4 simpl k = U l = z k = U
5 3 4 sseq12d k = U l = z 𝒫 l k 𝒫 z U
6 3 3adant3 k = U l = z m = f 𝒫 l = 𝒫 z
7 6 adantr k = U l = z m = f n = w 𝒫 l = 𝒫 z
8 simpr k = U l = z m = f n = w n = w
9 7 8 sseq12d k = U l = z m = f n = w 𝒫 l n 𝒫 z w
10 simpl3 k = U l = z m = f n = w p = i q = v p = i
11 simpr k = U l = z m = f n = w p = i q = v q = v
12 10 11 eleq12d k = U l = z m = f n = w p = i q = v p q i v
13 simpl13 k = U l = z m = f n = w p = i q = v m = f
14 11 13 eleq12d k = U l = z m = f n = w p = i q = v q m v f
15 12 14 anbi12d k = U l = z m = f n = w p = i q = v p q q m i v v f
16 simpl11 k = U l = z m = f n = w p = i q = v k = U
17 15 16 cbvrexdva2 k = U l = z m = f n = w p = i q k p q q m v U i v v f
18 simpl3 k = U l = z m = f n = w p = i r = u p = i
19 simpr k = U l = z m = f n = w p = i r = u r = u
20 18 19 eleq12d k = U l = z m = f n = w p = i r = u p r i u
21 19 unieqd k = U l = z m = f n = w p = i r = u r = u
22 simpl2 k = U l = z m = f n = w p = i r = u n = w
23 21 22 sseq12d k = U l = z m = f n = w p = i r = u r n u w
24 20 23 anbi12d k = U l = z m = f n = w p = i r = u p r r n i u u w
25 simpl13 k = U l = z m = f n = w p = i r = u m = f
26 24 25 cbvrexdva2 k = U l = z m = f n = w p = i r m p r r n u f i u u w
27 17 26 imbi12d k = U l = z m = f n = w p = i q k p q q m r m p r r n v U i v v f u f i u u w
28 27 3expa k = U l = z m = f n = w p = i q k p q q m r m p r r n v U i v v f u f i u u w
29 simpll2 k = U l = z m = f n = w p = i l = z
30 28 29 cbvraldva2 k = U l = z m = f n = w p l q k p q q m r m p r r n i z v U i v v f u f i u u w
31 9 30 anbi12d k = U l = z m = f n = w 𝒫 l n p l q k p q q m r m p r r n 𝒫 z w i z v U i v v f u f i u u w
32 simpl1 k = U l = z m = f n = w k = U
33 31 32 cbvrexdva2 k = U l = z m = f n k 𝒫 l n p l q k p q q m r m p r r n w U 𝒫 z w i z v U i v v f u f i u u w
34 33 3expa k = U l = z m = f n k 𝒫 l n p l q k p q q m r m p r r n w U 𝒫 z w i z v U i v v f u f i u u w
35 34 cbvaldvaw k = U l = z m n k 𝒫 l n p l q k p q q m r m p r r n f w U 𝒫 z w i z v U i v v f u f i u u w
36 5 35 anbi12d k = U l = z 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n 𝒫 z U f w U 𝒫 z w i z v U i v v f u f i u u w
37 36 4 cbvraldva2 k = U l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n z U 𝒫 z U f w U 𝒫 z w i z v U i v v f u f i u u w
38 37 1 elab2g U V U M z U 𝒫 z U f w U 𝒫 z w i z v U i v v f u f i u u w