| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismnu.1 |  | 
						
							| 2 |  | simpr |  | 
						
							| 3 | 2 | pweqd |  | 
						
							| 4 |  | simpl |  | 
						
							| 5 | 3 4 | sseq12d |  | 
						
							| 6 | 3 | 3adant3 |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 |  | simpr |  | 
						
							| 9 | 7 8 | sseq12d |  | 
						
							| 10 |  | simpl3 |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 | 10 11 | eleq12d |  | 
						
							| 13 |  | simpl13 |  | 
						
							| 14 | 11 13 | eleq12d |  | 
						
							| 15 | 12 14 | anbi12d |  | 
						
							| 16 |  | simpl11 |  | 
						
							| 17 | 15 16 | cbvrexdva2 |  | 
						
							| 18 |  | simpl3 |  | 
						
							| 19 |  | simpr |  | 
						
							| 20 | 18 19 | eleq12d |  | 
						
							| 21 | 19 | unieqd |  | 
						
							| 22 |  | simpl2 |  | 
						
							| 23 | 21 22 | sseq12d |  | 
						
							| 24 | 20 23 | anbi12d |  | 
						
							| 25 |  | simpl13 |  | 
						
							| 26 | 24 25 | cbvrexdva2 |  | 
						
							| 27 | 17 26 | imbi12d |  | 
						
							| 28 | 27 | 3expa |  | 
						
							| 29 |  | simpll2 |  | 
						
							| 30 | 28 29 | cbvraldva2 |  | 
						
							| 31 | 9 30 | anbi12d |  | 
						
							| 32 |  | simpl1 |  | 
						
							| 33 | 31 32 | cbvrexdva2 |  | 
						
							| 34 | 33 | 3expa |  | 
						
							| 35 | 34 | cbvaldvaw |  | 
						
							| 36 | 5 35 | anbi12d |  | 
						
							| 37 | 36 4 | cbvraldva2 |  | 
						
							| 38 | 37 1 | elab2g |  |