Metamath Proof Explorer


Theorem ismnu

Description: The hypothesis of this theorem defines a class M of sets that we temporarily call "minimal universes", and which will turn out in grumnueq to be exactly Grothendicek universes. Minimal universes are sets which satisfy the predicate on y in rr-groth , except for the x e. y clause.

A minimal universe is closed under subsets ( mnussd ), powersets ( mnupwd ), and an operation which is similar to a combination of collection and union ( mnuop3d ), from which closure under pairing ( mnuprd ), unions ( mnuunid ), and function ranges ( mnurnd ) can be deduced, from which equivalence with Grothendieck universes ( grumnueq ) can be deduced. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypothesis ismnu.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
Assertion ismnu UVUMzU𝒫zUfwU𝒫zwizvUivvfufiuuw

Proof

Step Hyp Ref Expression
1 ismnu.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 simpr k=Ul=zl=z
3 2 pweqd k=Ul=z𝒫l=𝒫z
4 simpl k=Ul=zk=U
5 3 4 sseq12d k=Ul=z𝒫lk𝒫zU
6 3 3adant3 k=Ul=zm=f𝒫l=𝒫z
7 6 adantr k=Ul=zm=fn=w𝒫l=𝒫z
8 simpr k=Ul=zm=fn=wn=w
9 7 8 sseq12d k=Ul=zm=fn=w𝒫ln𝒫zw
10 simpl3 k=Ul=zm=fn=wp=iq=vp=i
11 simpr k=Ul=zm=fn=wp=iq=vq=v
12 10 11 eleq12d k=Ul=zm=fn=wp=iq=vpqiv
13 simpl13 k=Ul=zm=fn=wp=iq=vm=f
14 11 13 eleq12d k=Ul=zm=fn=wp=iq=vqmvf
15 12 14 anbi12d k=Ul=zm=fn=wp=iq=vpqqmivvf
16 simpl11 k=Ul=zm=fn=wp=iq=vk=U
17 15 16 cbvrexdva2 k=Ul=zm=fn=wp=iqkpqqmvUivvf
18 simpl3 k=Ul=zm=fn=wp=ir=up=i
19 simpr k=Ul=zm=fn=wp=ir=ur=u
20 18 19 eleq12d k=Ul=zm=fn=wp=ir=upriu
21 19 unieqd k=Ul=zm=fn=wp=ir=ur=u
22 simpl2 k=Ul=zm=fn=wp=ir=un=w
23 21 22 sseq12d k=Ul=zm=fn=wp=ir=urnuw
24 20 23 anbi12d k=Ul=zm=fn=wp=ir=uprrniuuw
25 simpl13 k=Ul=zm=fn=wp=ir=um=f
26 24 25 cbvrexdva2 k=Ul=zm=fn=wp=irmprrnufiuuw
27 17 26 imbi12d k=Ul=zm=fn=wp=iqkpqqmrmprrnvUivvfufiuuw
28 27 3expa k=Ul=zm=fn=wp=iqkpqqmrmprrnvUivvfufiuuw
29 simpll2 k=Ul=zm=fn=wp=il=z
30 28 29 cbvraldva2 k=Ul=zm=fn=wplqkpqqmrmprrnizvUivvfufiuuw
31 9 30 anbi12d k=Ul=zm=fn=w𝒫lnplqkpqqmrmprrn𝒫zwizvUivvfufiuuw
32 simpl1 k=Ul=zm=fn=wk=U
33 31 32 cbvrexdva2 k=Ul=zm=fnk𝒫lnplqkpqqmrmprrnwU𝒫zwizvUivvfufiuuw
34 33 3expa k=Ul=zm=fnk𝒫lnplqkpqqmrmprrnwU𝒫zwizvUivvfufiuuw
35 34 cbvaldvaw k=Ul=zmnk𝒫lnplqkpqqmrmprrnfwU𝒫zwizvUivvfufiuuw
36 5 35 anbi12d k=Ul=z𝒫lkmnk𝒫lnplqkpqqmrmprrn𝒫zUfwU𝒫zwizvUivvfufiuuw
37 36 4 cbvraldva2 k=Ulk𝒫lkmnk𝒫lnplqkpqqmrmprrnzU𝒫zUfwU𝒫zwizvUivvfufiuuw
38 37 1 elab2g UVUMzU𝒫zUfwU𝒫zwizvUivvfufiuuw