Metamath Proof Explorer


Theorem isnumbasgrplem3

Description: Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015)

Ref Expression
Assertion isnumbasgrplem3 SdomcardSSBaseAbel

Proof

Step Hyp Ref Expression
1 hashcl SFinS0
2 1 adantl SSFinS0
3 eqid /S=/S
4 3 zncrng S0/SCRing
5 crngring /SCRing/SRing
6 ringabl /SRing/SAbel
7 2 4 5 6 4syl SSFin/SAbel
8 hashnncl SFinSS
9 8 biimparc SSFinS
10 eqid Base/S=Base/S
11 3 10 znhash SBase/S=S
12 9 11 syl SSFinBase/S=S
13 12 eqcomd SSFinS=Base/S
14 simpr SSFinSFin
15 3 10 znfi SBase/SFin
16 9 15 syl SSFinBase/SFin
17 hashen SFinBase/SFinS=Base/SSBase/S
18 14 16 17 syl2anc SSFinS=Base/SSBase/S
19 13 18 mpbid SSFinSBase/S
20 10 isnumbasgrplem1 /SAbelSBase/SSBaseAbel
21 7 19 20 syl2anc SSFinSBaseAbel
22 21 adantll SdomcardSSFinSBaseAbel
23 2nn0 20
24 eqid /2=/2
25 24 zncrng 20/2CRing
26 crngring /2CRing/2Ring
27 23 25 26 mp2b /2Ring
28 eqid /2freeLModS=/2freeLModS
29 28 frlmlmod /2RingSdomcard/2freeLModSLMod
30 27 29 mpan Sdomcard/2freeLModSLMod
31 lmodabl /2freeLModSLMod/2freeLModSAbel
32 30 31 syl Sdomcard/2freeLModSAbel
33 32 ad2antrr SdomcardS¬SFin/2freeLModSAbel
34 eqid Base/2freeLModS=Base/2freeLModS
35 24 28 34 frlmpwfi SdomcardBase/2freeLModS𝒫SFin
36 35 ad2antrr SdomcardS¬SFinBase/2freeLModS𝒫SFin
37 simpll SdomcardS¬SFinSdomcard
38 numinfctb Sdomcard¬SFinωS
39 38 adantlr SdomcardS¬SFinωS
40 infpwfien SdomcardωS𝒫SFinS
41 37 39 40 syl2anc SdomcardS¬SFin𝒫SFinS
42 entr Base/2freeLModS𝒫SFin𝒫SFinSBase/2freeLModSS
43 36 41 42 syl2anc SdomcardS¬SFinBase/2freeLModSS
44 43 ensymd SdomcardS¬SFinSBase/2freeLModS
45 34 isnumbasgrplem1 /2freeLModSAbelSBase/2freeLModSSBaseAbel
46 33 44 45 syl2anc SdomcardS¬SFinSBaseAbel
47 22 46 pm2.61dan SdomcardSSBaseAbel