| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashcl |
|
| 2 |
1
|
adantl |
|
| 3 |
|
eqid |
|
| 4 |
3
|
zncrng |
|
| 5 |
|
crngring |
|
| 6 |
|
ringabl |
|
| 7 |
2 4 5 6
|
4syl |
|
| 8 |
|
hashnncl |
|
| 9 |
8
|
biimparc |
|
| 10 |
|
eqid |
|
| 11 |
3 10
|
znhash |
|
| 12 |
9 11
|
syl |
|
| 13 |
12
|
eqcomd |
|
| 14 |
|
simpr |
|
| 15 |
3 10
|
znfi |
|
| 16 |
9 15
|
syl |
|
| 17 |
|
hashen |
|
| 18 |
14 16 17
|
syl2anc |
|
| 19 |
13 18
|
mpbid |
|
| 20 |
10
|
isnumbasgrplem1 |
|
| 21 |
7 19 20
|
syl2anc |
|
| 22 |
21
|
adantll |
|
| 23 |
|
2nn0 |
|
| 24 |
|
eqid |
|
| 25 |
24
|
zncrng |
|
| 26 |
|
crngring |
|
| 27 |
23 25 26
|
mp2b |
|
| 28 |
|
eqid |
|
| 29 |
28
|
frlmlmod |
|
| 30 |
27 29
|
mpan |
|
| 31 |
|
lmodabl |
|
| 32 |
30 31
|
syl |
|
| 33 |
32
|
ad2antrr |
|
| 34 |
|
eqid |
|
| 35 |
24 28 34
|
frlmpwfi |
|
| 36 |
35
|
ad2antrr |
|
| 37 |
|
simpll |
|
| 38 |
|
numinfctb |
|
| 39 |
38
|
adantlr |
|
| 40 |
|
infpwfien |
|
| 41 |
37 39 40
|
syl2anc |
|
| 42 |
|
entr |
|
| 43 |
36 41 42
|
syl2anc |
|
| 44 |
43
|
ensymd |
|
| 45 |
34
|
isnumbasgrplem1 |
|
| 46 |
33 44 45
|
syl2anc |
|
| 47 |
22 46
|
pm2.61dan |
|