| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashcl |  | 
						
							| 2 | 1 | adantl |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 | 3 | zncrng |  | 
						
							| 5 |  | crngring |  | 
						
							| 6 |  | ringabl |  | 
						
							| 7 | 2 4 5 6 | 4syl |  | 
						
							| 8 |  | hashnncl |  | 
						
							| 9 | 8 | biimparc |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 3 10 | znhash |  | 
						
							| 12 | 9 11 | syl |  | 
						
							| 13 | 12 | eqcomd |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 | 3 10 | znfi |  | 
						
							| 16 | 9 15 | syl |  | 
						
							| 17 |  | hashen |  | 
						
							| 18 | 14 16 17 | syl2anc |  | 
						
							| 19 | 13 18 | mpbid |  | 
						
							| 20 | 10 | isnumbasgrplem1 |  | 
						
							| 21 | 7 19 20 | syl2anc |  | 
						
							| 22 | 21 | adantll |  | 
						
							| 23 |  | 2nn0 |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 24 | zncrng |  | 
						
							| 26 |  | crngring |  | 
						
							| 27 | 23 25 26 | mp2b |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 28 | frlmlmod |  | 
						
							| 30 | 27 29 | mpan |  | 
						
							| 31 |  | lmodabl |  | 
						
							| 32 | 30 31 | syl |  | 
						
							| 33 | 32 | ad2antrr |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 24 28 34 | frlmpwfi |  | 
						
							| 36 | 35 | ad2antrr |  | 
						
							| 37 |  | simpll |  | 
						
							| 38 |  | numinfctb |  | 
						
							| 39 | 38 | adantlr |  | 
						
							| 40 |  | infpwfien |  | 
						
							| 41 | 37 39 40 | syl2anc |  | 
						
							| 42 |  | entr |  | 
						
							| 43 | 36 41 42 | syl2anc |  | 
						
							| 44 | 43 | ensymd |  | 
						
							| 45 | 34 | isnumbasgrplem1 |  | 
						
							| 46 | 33 44 45 | syl2anc |  | 
						
							| 47 | 22 46 | pm2.61dan |  |