Description: Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isnumbasgrplem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl | |
|
2 | 1 | adantl | |
3 | eqid | |
|
4 | 3 | zncrng | |
5 | crngring | |
|
6 | ringabl | |
|
7 | 2 4 5 6 | 4syl | |
8 | hashnncl | |
|
9 | 8 | biimparc | |
10 | eqid | |
|
11 | 3 10 | znhash | |
12 | 9 11 | syl | |
13 | 12 | eqcomd | |
14 | simpr | |
|
15 | 3 10 | znfi | |
16 | 9 15 | syl | |
17 | hashen | |
|
18 | 14 16 17 | syl2anc | |
19 | 13 18 | mpbid | |
20 | 10 | isnumbasgrplem1 | |
21 | 7 19 20 | syl2anc | |
22 | 21 | adantll | |
23 | 2nn0 | |
|
24 | eqid | |
|
25 | 24 | zncrng | |
26 | crngring | |
|
27 | 23 25 26 | mp2b | |
28 | eqid | |
|
29 | 28 | frlmlmod | |
30 | 27 29 | mpan | |
31 | lmodabl | |
|
32 | 30 31 | syl | |
33 | 32 | ad2antrr | |
34 | eqid | |
|
35 | 24 28 34 | frlmpwfi | |
36 | 35 | ad2antrr | |
37 | simpll | |
|
38 | numinfctb | |
|
39 | 38 | adantlr | |
40 | infpwfien | |
|
41 | 37 39 40 | syl2anc | |
42 | entr | |
|
43 | 36 41 42 | syl2anc | |
44 | 43 | ensymd | |
45 | 34 | isnumbasgrplem1 | |
46 | 33 44 45 | syl2anc | |
47 | 22 46 | pm2.61dan | |