Metamath Proof Explorer


Theorem isomgrtrlem

Description: Lemma for isomgrtr . (Contributed by AV, 5-Dec-2022)

Ref Expression
Assertion isomgrtrlem AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAvfiEdgAj=iEdgCwgj

Proof

Step Hyp Ref Expression
1 imaco vfiEdgAj=vfiEdgAj
2 1 a1i AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAvfiEdgAj=vfiEdgAj
3 fveq2 i=jiEdgAi=iEdgAj
4 3 imaeq2d i=jfiEdgAi=fiEdgAj
5 2fveq3 i=jiEdgBgi=iEdgBgj
6 4 5 eqeq12d i=jfiEdgAi=iEdgBgifiEdgAj=iEdgBgj
7 6 rspccv idomiEdgAfiEdgAi=iEdgBgijdomiEdgAfiEdgAj=iEdgBgj
8 7 adantl g:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgijdomiEdgAfiEdgAj=iEdgBgj
9 8 ad2antlr AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAfiEdgAj=iEdgBgj
10 9 imp AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAfiEdgAj=iEdgBgj
11 10 imaeq2d AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAvfiEdgAj=viEdgBgj
12 simplrr AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAkdomiEdgBviEdgBk=iEdgCwk
13 f1of g:domiEdgA1-1 ontodomiEdgBg:domiEdgAdomiEdgB
14 ffvelcdm g:domiEdgAdomiEdgBjdomiEdgAgjdomiEdgB
15 14 ex g:domiEdgAdomiEdgBjdomiEdgAgjdomiEdgB
16 13 15 syl g:domiEdgA1-1 ontodomiEdgBjdomiEdgAgjdomiEdgB
17 16 adantr g:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgijdomiEdgAgjdomiEdgB
18 17 ad2antlr AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAgjdomiEdgB
19 18 imp AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAgjdomiEdgB
20 fveq2 k=gjiEdgBk=iEdgBgj
21 20 imaeq2d k=gjviEdgBk=viEdgBgj
22 2fveq3 k=gjiEdgCwk=iEdgCwgj
23 21 22 eqeq12d k=gjviEdgBk=iEdgCwkviEdgBgj=iEdgCwgj
24 23 rspccv kdomiEdgBviEdgBk=iEdgCwkgjdomiEdgBviEdgBgj=iEdgCwgj
25 12 19 24 sylc AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAviEdgBgj=iEdgCwgj
26 11 25 eqtrd AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAvfiEdgAj=iEdgCwgj
27 f1ofn g:domiEdgA1-1 ontodomiEdgBgFndomiEdgA
28 27 adantr g:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgigFndomiEdgA
29 28 ad2antlr AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkgFndomiEdgA
30 fvco2 gFndomiEdgAjdomiEdgAwgj=wgj
31 29 30 sylan AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAwgj=wgj
32 31 eqcomd AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAwgj=wgj
33 32 fveq2d AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAiEdgCwgj=iEdgCwgj
34 2 26 33 3eqtrd AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAvfiEdgAj=iEdgCwgj
35 34 ralrimiva AUHGraphBUHGraphCXf:VtxA1-1 ontoVtxBv:VtxB1-1 ontoVtxCg:domiEdgA1-1 ontodomiEdgBidomiEdgAfiEdgAi=iEdgBgiw:domiEdgB1-1 ontodomiEdgCkdomiEdgBviEdgBk=iEdgCwkjdomiEdgAvfiEdgAj=iEdgCwgj