Description: Lemma for isomgrtr . (Contributed by AV, 5-Dec-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | isomgrtrlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaco | |
|
2 | 1 | a1i | |
3 | fveq2 | |
|
4 | 3 | imaeq2d | |
5 | 2fveq3 | |
|
6 | 4 5 | eqeq12d | |
7 | 6 | rspccv | |
8 | 7 | adantl | |
9 | 8 | ad2antlr | |
10 | 9 | imp | |
11 | 10 | imaeq2d | |
12 | simplrr | |
|
13 | f1of | |
|
14 | ffvelcdm | |
|
15 | 14 | ex | |
16 | 13 15 | syl | |
17 | 16 | adantr | |
18 | 17 | ad2antlr | |
19 | 18 | imp | |
20 | fveq2 | |
|
21 | 20 | imaeq2d | |
22 | 2fveq3 | |
|
23 | 21 22 | eqeq12d | |
24 | 23 | rspccv | |
25 | 12 19 24 | sylc | |
26 | 11 25 | eqtrd | |
27 | f1ofn | |
|
28 | 27 | adantr | |
29 | 28 | ad2antlr | |
30 | fvco2 | |
|
31 | 29 30 | sylan | |
32 | 31 | eqcomd | |
33 | 32 | fveq2d | |
34 | 2 26 33 | 3eqtrd | |
35 | 34 | ralrimiva | |