Metamath Proof Explorer


Theorem isopos

Description: The predicate "is an orthoposet." (Contributed by NM, 20-Oct-2011) (Revised by NM, 14-Sep-2018)

Ref Expression
Hypotheses isopos.b B=BaseK
isopos.e U=lubK
isopos.g G=glbK
isopos.l ˙=K
isopos.o ˙=ocK
isopos.j ˙=joinK
isopos.m ˙=meetK
isopos.f 0˙=0.K
isopos.u 1˙=1.K
Assertion isopos KOPKPosetBdomUBdomGxByB˙xB˙˙x=xx˙y˙y˙˙xx˙˙x=1˙x˙˙x=0˙

Proof

Step Hyp Ref Expression
1 isopos.b B=BaseK
2 isopos.e U=lubK
3 isopos.g G=glbK
4 isopos.l ˙=K
5 isopos.o ˙=ocK
6 isopos.j ˙=joinK
7 isopos.m ˙=meetK
8 isopos.f 0˙=0.K
9 isopos.u 1˙=1.K
10 fveq2 p=KBasep=BaseK
11 10 1 eqtr4di p=KBasep=B
12 fveq2 p=Klubp=lubK
13 12 2 eqtr4di p=Klubp=U
14 13 dmeqd p=Kdomlubp=domU
15 11 14 eleq12d p=KBasepdomlubpBdomU
16 fveq2 p=Kglbp=glbK
17 16 3 eqtr4di p=Kglbp=G
18 17 dmeqd p=Kdomglbp=domG
19 11 18 eleq12d p=KBasepdomglbpBdomG
20 15 19 anbi12d p=KBasepdomlubpBasepdomglbpBdomUBdomG
21 fveq2 p=Kocp=ocK
22 21 5 eqtr4di p=Kocp=˙
23 22 eqeq2d p=Kn=ocpn=˙
24 11 eleq2d p=KnxBasepnxB
25 fveq2 p=Kp=K
26 25 4 eqtr4di p=Kp=˙
27 26 breqd p=Kxpyx˙y
28 26 breqd p=Knypnxny˙nx
29 27 28 imbi12d p=Kxpynypnxx˙yny˙nx
30 24 29 3anbi13d p=KnxBasepnnx=xxpynypnxnxBnnx=xx˙yny˙nx
31 fveq2 p=Kjoinp=joinK
32 31 6 eqtr4di p=Kjoinp=˙
33 32 oveqd p=Kxjoinpnx=x˙nx
34 fveq2 p=K1.p=1.K
35 34 9 eqtr4di p=K1.p=1˙
36 33 35 eqeq12d p=Kxjoinpnx=1.px˙nx=1˙
37 fveq2 p=Kmeetp=meetK
38 37 7 eqtr4di p=Kmeetp=˙
39 38 oveqd p=Kxmeetpnx=x˙nx
40 fveq2 p=K0.p=0.K
41 40 8 eqtr4di p=K0.p=0˙
42 39 41 eqeq12d p=Kxmeetpnx=0.px˙nx=0˙
43 30 36 42 3anbi123d p=KnxBasepnnx=xxpynypnxxjoinpnx=1.pxmeetpnx=0.pnxBnnx=xx˙yny˙nxx˙nx=1˙x˙nx=0˙
44 11 43 raleqbidv p=KyBasepnxBasepnnx=xxpynypnxxjoinpnx=1.pxmeetpnx=0.pyBnxBnnx=xx˙yny˙nxx˙nx=1˙x˙nx=0˙
45 11 44 raleqbidv p=KxBasepyBasepnxBasepnnx=xxpynypnxxjoinpnx=1.pxmeetpnx=0.pxByBnxBnnx=xx˙yny˙nxx˙nx=1˙x˙nx=0˙
46 23 45 anbi12d p=Kn=ocpxBasepyBasepnxBasepnnx=xxpynypnxxjoinpnx=1.pxmeetpnx=0.pn=˙xByBnxBnnx=xx˙yny˙nxx˙nx=1˙x˙nx=0˙
47 46 exbidv p=Knn=ocpxBasepyBasepnxBasepnnx=xxpynypnxxjoinpnx=1.pxmeetpnx=0.pnn=˙xByBnxBnnx=xx˙yny˙nxx˙nx=1˙x˙nx=0˙
48 20 47 anbi12d p=KBasepdomlubpBasepdomglbpnn=ocpxBasepyBasepnxBasepnnx=xxpynypnxxjoinpnx=1.pxmeetpnx=0.pBdomUBdomGnn=˙xByBnxBnnx=xx˙yny˙nxx˙nx=1˙x˙nx=0˙
49 df-oposet OP=pPoset|BasepdomlubpBasepdomglbpnn=ocpxBasepyBasepnxBasepnnx=xxpynypnxxjoinpnx=1.pxmeetpnx=0.p
50 48 49 elrab2 KOPKPosetBdomUBdomGnn=˙xByBnxBnnx=xx˙yny˙nxx˙nx=1˙x˙nx=0˙
51 anass KPosetBdomUBdomGnn=˙xByBnxBnnx=xx˙yny˙nxx˙nx=1˙x˙nx=0˙KPosetBdomUBdomGnn=˙xByBnxBnnx=xx˙yny˙nxx˙nx=1˙x˙nx=0˙
52 3anass KPosetBdomUBdomGKPosetBdomUBdomG
53 52 bicomi KPosetBdomUBdomGKPosetBdomUBdomG
54 5 fvexi ˙V
55 fveq1 n=˙nx=˙x
56 55 eleq1d n=˙nxB˙xB
57 id n=˙n=˙
58 57 55 fveq12d n=˙nnx=˙˙x
59 58 eqeq1d n=˙nnx=x˙˙x=x
60 fveq1 n=˙ny=˙y
61 60 55 breq12d n=˙ny˙nx˙y˙˙x
62 61 imbi2d n=˙x˙yny˙nxx˙y˙y˙˙x
63 56 59 62 3anbi123d n=˙nxBnnx=xx˙yny˙nx˙xB˙˙x=xx˙y˙y˙˙x
64 55 oveq2d n=˙x˙nx=x˙˙x
65 64 eqeq1d n=˙x˙nx=1˙x˙˙x=1˙
66 55 oveq2d n=˙x˙nx=x˙˙x
67 66 eqeq1d n=˙x˙nx=0˙x˙˙x=0˙
68 63 65 67 3anbi123d n=˙nxBnnx=xx˙yny˙nxx˙nx=1˙x˙nx=0˙˙xB˙˙x=xx˙y˙y˙˙xx˙˙x=1˙x˙˙x=0˙
69 68 2ralbidv n=˙xByBnxBnnx=xx˙yny˙nxx˙nx=1˙x˙nx=0˙xByB˙xB˙˙x=xx˙y˙y˙˙xx˙˙x=1˙x˙˙x=0˙
70 54 69 ceqsexv nn=˙xByBnxBnnx=xx˙yny˙nxx˙nx=1˙x˙nx=0˙xByB˙xB˙˙x=xx˙y˙y˙˙xx˙˙x=1˙x˙˙x=0˙
71 53 70 anbi12i KPosetBdomUBdomGnn=˙xByBnxBnnx=xx˙yny˙nxx˙nx=1˙x˙nx=0˙KPosetBdomUBdomGxByB˙xB˙˙x=xx˙y˙y˙˙xx˙˙x=1˙x˙˙x=0˙
72 50 51 71 3bitr2i KOPKPosetBdomUBdomGxByB˙xB˙˙x=xx˙y˙y˙˙xx˙˙x=1˙x˙˙x=0˙