Description: Two ways to say that A is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | isppw | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | vmaval | |
3 | 2 | neeq1d | |
4 | reuen1 | |
|
5 | hash1 | |
|
6 | 5 | eqeq2i | |
7 | prmdvdsfi | |
|
8 | 1onn | |
|
9 | nnfi | |
|
10 | 8 9 | ax-mp | |
11 | hashen | |
|
12 | 7 10 11 | sylancl | |
13 | 6 12 | bitr3id | |
14 | 13 | biimpar | |
15 | 14 | iftrued | |
16 | simpr | |
|
17 | en1b | |
|
18 | 16 17 | sylib | |
19 | ssrab2 | |
|
20 | 18 19 | eqsstrrdi | |
21 | 7 | uniexd | |
22 | 21 | adantr | |
23 | snssg | |
|
24 | 22 23 | syl | |
25 | 20 24 | mpbird | |
26 | prmuz2 | |
|
27 | 25 26 | syl | |
28 | eluzelre | |
|
29 | 27 28 | syl | |
30 | eluz2gt1 | |
|
31 | 27 30 | syl | |
32 | 29 31 | rplogcld | |
33 | 32 | rpne0d | |
34 | 15 33 | eqnetrd | |
35 | 34 | ex | |
36 | iffalse | |
|
37 | 36 | necon1ai | |
38 | 37 13 | imbitrid | |
39 | 35 38 | impbid | |
40 | 4 39 | bitrid | |
41 | 3 40 | bitr4d | |