Metamath Proof Explorer


Theorem isppw

Description: Two ways to say that A is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion isppw A Λ A 0 ∃! p p A

Proof

Step Hyp Ref Expression
1 eqid p | p A = p | p A
2 1 vmaval A Λ A = if p | p A = 1 log p | p A 0
3 2 neeq1d A Λ A 0 if p | p A = 1 log p | p A 0 0
4 reuen1 ∃! p p A p | p A 1 𝑜
5 hash1 1 𝑜 = 1
6 5 eqeq2i p | p A = 1 𝑜 p | p A = 1
7 prmdvdsfi A p | p A Fin
8 1onn 1 𝑜 ω
9 nnfi 1 𝑜 ω 1 𝑜 Fin
10 8 9 ax-mp 1 𝑜 Fin
11 hashen p | p A Fin 1 𝑜 Fin p | p A = 1 𝑜 p | p A 1 𝑜
12 7 10 11 sylancl A p | p A = 1 𝑜 p | p A 1 𝑜
13 6 12 bitr3id A p | p A = 1 p | p A 1 𝑜
14 13 biimpar A p | p A 1 𝑜 p | p A = 1
15 14 iftrued A p | p A 1 𝑜 if p | p A = 1 log p | p A 0 = log p | p A
16 simpr A p | p A 1 𝑜 p | p A 1 𝑜
17 en1b p | p A 1 𝑜 p | p A = p | p A
18 16 17 sylib A p | p A 1 𝑜 p | p A = p | p A
19 ssrab2 p | p A
20 18 19 eqsstrrdi A p | p A 1 𝑜 p | p A
21 7 uniexd A p | p A V
22 21 adantr A p | p A 1 𝑜 p | p A V
23 snssg p | p A V p | p A p | p A
24 22 23 syl A p | p A 1 𝑜 p | p A p | p A
25 20 24 mpbird A p | p A 1 𝑜 p | p A
26 prmuz2 p | p A p | p A 2
27 25 26 syl A p | p A 1 𝑜 p | p A 2
28 eluzelre p | p A 2 p | p A
29 27 28 syl A p | p A 1 𝑜 p | p A
30 eluz2gt1 p | p A 2 1 < p | p A
31 27 30 syl A p | p A 1 𝑜 1 < p | p A
32 29 31 rplogcld A p | p A 1 𝑜 log p | p A +
33 32 rpne0d A p | p A 1 𝑜 log p | p A 0
34 15 33 eqnetrd A p | p A 1 𝑜 if p | p A = 1 log p | p A 0 0
35 34 ex A p | p A 1 𝑜 if p | p A = 1 log p | p A 0 0
36 iffalse ¬ p | p A = 1 if p | p A = 1 log p | p A 0 = 0
37 36 necon1ai if p | p A = 1 log p | p A 0 0 p | p A = 1
38 37 13 syl5ib A if p | p A = 1 log p | p A 0 0 p | p A 1 𝑜
39 35 38 impbid A p | p A 1 𝑜 if p | p A = 1 log p | p A 0 0
40 4 39 syl5bb A ∃! p p A if p | p A = 1 log p | p A 0 0
41 3 40 bitr4d A Λ A 0 ∃! p p A