Metamath Proof Explorer


Theorem isprimroot

Description: The value of a primitive root. (Contributed by metakunt, 25-Apr-2025)

Ref Expression
Hypotheses isprimroot.1 φ R CMnd
isprimroot.2 φ K 0
isprimroot.3 × ˙ = R
Assertion isprimroot φ M R PrimRoots K M Base R K × ˙ M = 0 R l 0 l × ˙ M = 0 R K l

Proof

Step Hyp Ref Expression
1 isprimroot.1 φ R CMnd
2 isprimroot.2 φ K 0
3 isprimroot.3 × ˙ = R
4 df-primroots PrimRoots = r CMnd , k 0 Base r / b x b | k r x = 0 r l 0 l r x = 0 r k l
5 4 a1i φ PrimRoots = r CMnd , k 0 Base r / b x b | k r x = 0 r l 0 l r x = 0 r k l
6 simprl φ r = R k = K r = R
7 6 fveq2d φ r = R k = K Base r = Base R
8 simplrl φ r = R k = K x b r = R
9 8 fveq2d φ r = R k = K x b r = R
10 simplrr φ r = R k = K x b k = K
11 eqidd φ r = R k = K x b x = x
12 9 10 11 oveq123d φ r = R k = K x b k r x = K R x
13 8 fveq2d φ r = R k = K x b 0 r = 0 R
14 12 13 eqeq12d φ r = R k = K x b k r x = 0 r K R x = 0 R
15 6 fveq2d φ r = R k = K r = R
16 15 oveqdr φ r = R k = K x b l r x = l R x
17 16 13 eqeq12d φ r = R k = K x b l r x = 0 r l R x = 0 R
18 10 breq1d φ r = R k = K x b k l K l
19 17 18 imbi12d φ r = R k = K x b l r x = 0 r k l l R x = 0 R K l
20 19 ralbidv φ r = R k = K x b l 0 l r x = 0 r k l l 0 l R x = 0 R K l
21 14 20 anbi12d φ r = R k = K x b k r x = 0 r l 0 l r x = 0 r k l K R x = 0 R l 0 l R x = 0 R K l
22 21 rabbidva φ r = R k = K x b | k r x = 0 r l 0 l r x = 0 r k l = x b | K R x = 0 R l 0 l R x = 0 R K l
23 7 22 csbeq12dv φ r = R k = K Base r / b x b | k r x = 0 r l 0 l r x = 0 r k l = Base R / b x b | K R x = 0 R l 0 l R x = 0 R K l
24 eqid x Base R | K R x = 0 R l 0 l R x = 0 R K l = x Base R | K R x = 0 R l 0 l R x = 0 R K l
25 fvexd φ Base R V
26 24 25 rabexd φ x Base R | K R x = 0 R l 0 l R x = 0 R K l V
27 simpr φ b = Base R b = Base R
28 27 rabeqdv φ b = Base R x b | K R x = 0 R l 0 l R x = 0 R K l = x Base R | K R x = 0 R l 0 l R x = 0 R K l
29 25 28 csbied φ Base R / b x b | K R x = 0 R l 0 l R x = 0 R K l = x Base R | K R x = 0 R l 0 l R x = 0 R K l
30 29 eleq1d φ Base R / b x b | K R x = 0 R l 0 l R x = 0 R K l V x Base R | K R x = 0 R l 0 l R x = 0 R K l V
31 26 30 mpbird φ Base R / b x b | K R x = 0 R l 0 l R x = 0 R K l V
32 5 23 1 2 31 ovmpod φ R PrimRoots K = Base R / b x b | K R x = 0 R l 0 l R x = 0 R K l
33 32 29 eqtrd φ R PrimRoots K = x Base R | K R x = 0 R l 0 l R x = 0 R K l
34 33 eleq2d φ M R PrimRoots K M x Base R | K R x = 0 R l 0 l R x = 0 R K l
35 oveq2 x = M K R x = K R M
36 35 eqeq1d x = M K R x = 0 R K R M = 0 R
37 oveq2 x = M l R x = l R M
38 37 eqeq1d x = M l R x = 0 R l R M = 0 R
39 38 imbi1d x = M l R x = 0 R K l l R M = 0 R K l
40 39 ralbidv x = M l 0 l R x = 0 R K l l 0 l R M = 0 R K l
41 36 40 anbi12d x = M K R x = 0 R l 0 l R x = 0 R K l K R M = 0 R l 0 l R M = 0 R K l
42 41 elrab M x Base R | K R x = 0 R l 0 l R x = 0 R K l M Base R K R M = 0 R l 0 l R M = 0 R K l
43 42 a1i φ M x Base R | K R x = 0 R l 0 l R x = 0 R K l M Base R K R M = 0 R l 0 l R M = 0 R K l
44 3anass M Base R K R M = 0 R l 0 l R M = 0 R K l M Base R K R M = 0 R l 0 l R M = 0 R K l
45 44 bicomi M Base R K R M = 0 R l 0 l R M = 0 R K l M Base R K R M = 0 R l 0 l R M = 0 R K l
46 45 a1i φ M Base R K R M = 0 R l 0 l R M = 0 R K l M Base R K R M = 0 R l 0 l R M = 0 R K l
47 biidd φ M Base R M Base R
48 3 eqcomi R = × ˙
49 48 a1i φ R = × ˙
50 49 oveqd φ K R M = K × ˙ M
51 50 eqeq1d φ K R M = 0 R K × ˙ M = 0 R
52 49 oveqd φ l R M = l × ˙ M
53 52 eqeq1d φ l R M = 0 R l × ˙ M = 0 R
54 53 imbi1d φ l R M = 0 R K l l × ˙ M = 0 R K l
55 54 ralbidv φ l 0 l R M = 0 R K l l 0 l × ˙ M = 0 R K l
56 47 51 55 3anbi123d φ M Base R K R M = 0 R l 0 l R M = 0 R K l M Base R K × ˙ M = 0 R l 0 l × ˙ M = 0 R K l
57 46 56 bitrd φ M Base R K R M = 0 R l 0 l R M = 0 R K l M Base R K × ˙ M = 0 R l 0 l × ˙ M = 0 R K l
58 43 57 bitrd φ M x Base R | K R x = 0 R l 0 l R x = 0 R K l M Base R K × ˙ M = 0 R l 0 l × ˙ M = 0 R K l
59 34 58 bitrd φ M R PrimRoots K M Base R K × ˙ M = 0 R l 0 l × ˙ M = 0 R K l