Step |
Hyp |
Ref |
Expression |
1 |
|
isprimroot.1 |
|
2 |
|
isprimroot.2 |
|
3 |
|
isprimroot.3 |
|
4 |
|
df-primroots |
|
5 |
4
|
a1i |
|
6 |
|
simprl |
|
7 |
6
|
fveq2d |
|
8 |
|
simplrl |
|
9 |
8
|
fveq2d |
|
10 |
|
simplrr |
|
11 |
|
eqidd |
|
12 |
9 10 11
|
oveq123d |
|
13 |
8
|
fveq2d |
|
14 |
12 13
|
eqeq12d |
|
15 |
6
|
fveq2d |
|
16 |
15
|
oveqdr |
|
17 |
16 13
|
eqeq12d |
|
18 |
10
|
breq1d |
|
19 |
17 18
|
imbi12d |
|
20 |
19
|
ralbidv |
|
21 |
14 20
|
anbi12d |
|
22 |
21
|
rabbidva |
|
23 |
7 22
|
csbeq12dv |
|
24 |
|
eqid |
|
25 |
|
fvexd |
|
26 |
24 25
|
rabexd |
|
27 |
|
simpr |
|
28 |
27
|
rabeqdv |
|
29 |
25 28
|
csbied |
|
30 |
29
|
eleq1d |
|
31 |
26 30
|
mpbird |
|
32 |
5 23 1 2 31
|
ovmpod |
|
33 |
32 29
|
eqtrd |
|
34 |
33
|
eleq2d |
|
35 |
|
oveq2 |
|
36 |
35
|
eqeq1d |
|
37 |
|
oveq2 |
|
38 |
37
|
eqeq1d |
|
39 |
38
|
imbi1d |
|
40 |
39
|
ralbidv |
|
41 |
36 40
|
anbi12d |
|
42 |
41
|
elrab |
|
43 |
42
|
a1i |
|
44 |
|
3anass |
|
45 |
44
|
bicomi |
|
46 |
45
|
a1i |
|
47 |
|
biidd |
|
48 |
3
|
eqcomi |
|
49 |
48
|
a1i |
|
50 |
49
|
oveqd |
|
51 |
50
|
eqeq1d |
|
52 |
49
|
oveqd |
|
53 |
52
|
eqeq1d |
|
54 |
53
|
imbi1d |
|
55 |
54
|
ralbidv |
|
56 |
47 51 55
|
3anbi123d |
|
57 |
46 56
|
bitrd |
|
58 |
43 57
|
bitrd |
|
59 |
34 58
|
bitrd |
|