Metamath Proof Explorer


Theorem isprm2

Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in ApostolNT p. 16. (Contributed by Paul Chapman, 26-Oct-2012)

Ref Expression
Assertion isprm2 PP2zzPz=1z=P

Proof

Step Hyp Ref Expression
1 1nprm ¬1
2 eleq1 P=1P1
3 2 biimpcd PP=11
4 1 3 mtoi P¬P=1
5 4 neqned PP1
6 5 pm4.71i PPP1
7 isprm PPn|nP2𝑜
8 isprm2lem PP1n|nP2𝑜n|nP=1P
9 eqss n|nP=1Pn|nP1P1Pn|nP
10 9 imbi2i Pn|nP=1PPn|nP1P1Pn|nP
11 1idssfct P1Pn|nP
12 jcab Pn|nP1P1Pn|nPPn|nP1PP1Pn|nP
13 11 12 mpbiran2 Pn|nP1P1Pn|nPPn|nP1P
14 10 13 bitri Pn|nP=1PPn|nP1P
15 14 pm5.74ri Pn|nP=1Pn|nP1P
16 15 adantr PP1n|nP=1Pn|nP1P
17 8 16 bitrd PP1n|nP2𝑜n|nP1P
18 17 expcom P1Pn|nP2𝑜n|nP1P
19 18 pm5.32d P1Pn|nP2𝑜Pn|nP1P
20 7 19 bitrid P1PPn|nP1P
21 20 pm5.32ri PP1Pn|nP1PP1
22 ancom Pn|nP1PP1P1Pn|nP1P
23 anass P1Pn|nP1PP1Pn|nP1P
24 22 23 bitr4i Pn|nP1PP1P1Pn|nP1P
25 ancom P1PPP1
26 eluz2b3 P2PP1
27 25 26 bitr4i P1PP2
28 27 anbi1i P1Pn|nP1PP2n|nP1P
29 dfss2 n|nP1Pzzn|nPz1P
30 breq1 n=znPzP
31 30 elrab zn|nPzzP
32 vex zV
33 32 elpr z1Pz=1z=P
34 31 33 imbi12i zn|nPz1PzzPz=1z=P
35 impexp zzPz=1z=PzzPz=1z=P
36 34 35 bitri zn|nPz1PzzPz=1z=P
37 36 albii zzn|nPz1PzzzPz=1z=P
38 df-ral zzPz=1z=PzzzPz=1z=P
39 37 38 bitr4i zzn|nPz1PzzPz=1z=P
40 29 39 bitri n|nP1PzzPz=1z=P
41 40 anbi2i P2n|nP1PP2zzPz=1z=P
42 24 28 41 3bitri Pn|nP1PP1P2zzPz=1z=P
43 6 21 42 3bitri PP2zzPz=1z=P