Description: A subring that is also a subspace is a subalgebra. The key theorem is islss3 . (Contributed by Mario Carneiro, 7-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issubassa.s | |
|
issubassa.l | |
||
Assertion | issubassa3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubassa.s | |
|
2 | issubassa.l | |
|
3 | 1 | subrgbas | |
4 | 3 | ad2antrl | |
5 | eqid | |
|
6 | 1 5 | resssca | |
7 | 6 | ad2antrl | |
8 | eqidd | |
|
9 | eqid | |
|
10 | 1 9 | ressvsca | |
11 | 10 | ad2antrl | |
12 | eqid | |
|
13 | 1 12 | ressmulr | |
14 | 13 | ad2antrl | |
15 | assalmod | |
|
16 | simpr | |
|
17 | 1 2 | lsslmod | |
18 | 15 16 17 | syl2an | |
19 | 1 | subrgring | |
20 | 19 | ad2antrl | |
21 | idd | |
|
22 | eqid | |
|
23 | 22 | subrgss | |
24 | 23 | ad2antrl | |
25 | 24 | sseld | |
26 | 24 | sseld | |
27 | 21 25 26 | 3anim123d | |
28 | 27 | imp | |
29 | eqid | |
|
30 | 22 5 29 9 12 | assaass | |
31 | 30 | adantlr | |
32 | 28 31 | syldan | |
33 | 22 5 29 9 12 | assaassr | |
34 | 33 | adantlr | |
35 | 28 34 | syldan | |
36 | 4 7 8 11 14 18 20 32 35 | isassad | |