Metamath Proof Explorer


Theorem issubassa3

Description: A subring that is also a subspace is a subalgebra. The key theorem is islss3 . (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses issubassa.s S=W𝑠A
issubassa.l L=LSubSpW
Assertion issubassa3 WAssAlgASubRingWALSAssAlg

Proof

Step Hyp Ref Expression
1 issubassa.s S=W𝑠A
2 issubassa.l L=LSubSpW
3 1 subrgbas ASubRingWA=BaseS
4 3 ad2antrl WAssAlgASubRingWALA=BaseS
5 eqid ScalarW=ScalarW
6 1 5 resssca ASubRingWScalarW=ScalarS
7 6 ad2antrl WAssAlgASubRingWALScalarW=ScalarS
8 eqidd WAssAlgASubRingWALBaseScalarW=BaseScalarW
9 eqid W=W
10 1 9 ressvsca ASubRingWW=S
11 10 ad2antrl WAssAlgASubRingWALW=S
12 eqid W=W
13 1 12 ressmulr ASubRingWW=S
14 13 ad2antrl WAssAlgASubRingWALW=S
15 assalmod WAssAlgWLMod
16 simpr ASubRingWALAL
17 1 2 lsslmod WLModALSLMod
18 15 16 17 syl2an WAssAlgASubRingWALSLMod
19 1 subrgring ASubRingWSRing
20 19 ad2antrl WAssAlgASubRingWALSRing
21 idd WAssAlgASubRingWALxBaseScalarWxBaseScalarW
22 eqid BaseW=BaseW
23 22 subrgss ASubRingWABaseW
24 23 ad2antrl WAssAlgASubRingWALABaseW
25 24 sseld WAssAlgASubRingWALyAyBaseW
26 24 sseld WAssAlgASubRingWALzAzBaseW
27 21 25 26 3anim123d WAssAlgASubRingWALxBaseScalarWyAzAxBaseScalarWyBaseWzBaseW
28 27 imp WAssAlgASubRingWALxBaseScalarWyAzAxBaseScalarWyBaseWzBaseW
29 eqid BaseScalarW=BaseScalarW
30 22 5 29 9 12 assaass WAssAlgxBaseScalarWyBaseWzBaseWxWyWz=xWyWz
31 30 adantlr WAssAlgASubRingWALxBaseScalarWyBaseWzBaseWxWyWz=xWyWz
32 28 31 syldan WAssAlgASubRingWALxBaseScalarWyAzAxWyWz=xWyWz
33 22 5 29 9 12 assaassr WAssAlgxBaseScalarWyBaseWzBaseWyWxWz=xWyWz
34 33 adantlr WAssAlgASubRingWALxBaseScalarWyBaseWzBaseWyWxWz=xWyWz
35 28 34 syldan WAssAlgASubRingWALxBaseScalarWyAzAyWxWz=xWyWz
36 4 7 8 11 14 18 20 32 35 isassad WAssAlgASubRingWALSAssAlg