Metamath Proof Explorer


Theorem iswspthsnon

Description: The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 12-May-2021) (Revised by AV, 14-Mar-2022)

Ref Expression
Hypothesis iswspthsnon.v V=VtxG
Assertion iswspthsnon ANWSPathsNOnGB=wANWWalksNOnGB|ffASPathsOnGBw

Proof

Step Hyp Ref Expression
1 iswspthsnon.v V=VtxG
2 0ov AB=
3 df-wspthsnon WSPathsNOn=n0,gVaVtxg,bVtxgwanWWalksNOngb|ffaSPathsOngbw
4 3 mpondm0 ¬N0GVNWSPathsNOnG=
5 4 oveqd ¬N0GVANWSPathsNOnGB=AB
6 id ¬N0GV¬N0GV
7 6 intnanrd ¬N0GV¬N0GVAVBV
8 1 wwlksnon0 ¬N0GVAVBVANWWalksNOnGB=
9 7 8 syl ¬N0GVANWWalksNOnGB=
10 9 rabeqdv ¬N0GVwANWWalksNOnGB|ffASPathsOnGBw=w|ffASPathsOnGBw
11 rab0 w|ffASPathsOnGBw=
12 10 11 eqtrdi ¬N0GVwANWWalksNOnGB|ffASPathsOnGBw=
13 2 5 12 3eqtr4a ¬N0GVANWSPathsNOnGB=wANWWalksNOnGB|ffASPathsOnGBw
14 1 wspthsnon N0GVNWSPathsNOnG=aV,bVwaNWWalksNOnGb|ffaSPathsOnGbw
15 14 adantr N0GV¬AVBVNWSPathsNOnG=aV,bVwaNWWalksNOnGb|ffaSPathsOnGbw
16 15 oveqd N0GV¬AVBVANWSPathsNOnGB=AaV,bVwaNWWalksNOnGb|ffaSPathsOnGbwB
17 eqid aV,bVwaNWWalksNOnGb|ffaSPathsOnGbw=aV,bVwaNWWalksNOnGb|ffaSPathsOnGbw
18 17 mpondm0 ¬AVBVAaV,bVwaNWWalksNOnGb|ffaSPathsOnGbwB=
19 18 adantl N0GV¬AVBVAaV,bVwaNWWalksNOnGb|ffaSPathsOnGbwB=
20 16 19 eqtrd N0GV¬AVBVANWSPathsNOnGB=
21 20 ex N0GV¬AVBVANWSPathsNOnGB=
22 5 2 eqtrdi ¬N0GVANWSPathsNOnGB=
23 22 a1d ¬N0GV¬AVBVANWSPathsNOnGB=
24 21 23 pm2.61i ¬AVBVANWSPathsNOnGB=
25 1 wwlksonvtx wANWWalksNOnGBAVBV
26 25 pm2.24d wANWWalksNOnGB¬AVBV¬fASPathsOnGBw
27 26 impcom ¬AVBVwANWWalksNOnGB¬fASPathsOnGBw
28 27 nexdv ¬AVBVwANWWalksNOnGB¬ffASPathsOnGBw
29 28 ralrimiva ¬AVBVwANWWalksNOnGB¬ffASPathsOnGBw
30 rabeq0 wANWWalksNOnGB|ffASPathsOnGBw=wANWWalksNOnGB¬ffASPathsOnGBw
31 29 30 sylibr ¬AVBVwANWWalksNOnGB|ffASPathsOnGBw=
32 24 31 eqtr4d ¬AVBVANWSPathsNOnGB=wANWWalksNOnGB|ffASPathsOnGBw
33 14 adantr N0GVAVBVNWSPathsNOnG=aV,bVwaNWWalksNOnGb|ffaSPathsOnGbw
34 oveq12 a=Ab=BaNWWalksNOnGb=ANWWalksNOnGB
35 oveq12 a=Ab=BaSPathsOnGb=ASPathsOnGB
36 35 breqd a=Ab=BfaSPathsOnGbwfASPathsOnGBw
37 36 exbidv a=Ab=BffaSPathsOnGbwffASPathsOnGBw
38 34 37 rabeqbidv a=Ab=BwaNWWalksNOnGb|ffaSPathsOnGbw=wANWWalksNOnGB|ffASPathsOnGBw
39 38 adantl N0GVAVBVa=Ab=BwaNWWalksNOnGb|ffaSPathsOnGbw=wANWWalksNOnGB|ffASPathsOnGBw
40 simprl N0GVAVBVAV
41 simprr N0GVAVBVBV
42 ovex ANWWalksNOnGBV
43 42 rabex wANWWalksNOnGB|ffASPathsOnGBwV
44 43 a1i N0GVAVBVwANWWalksNOnGB|ffASPathsOnGBwV
45 33 39 40 41 44 ovmpod N0GVAVBVANWSPathsNOnGB=wANWWalksNOnGB|ffASPathsOnGBw
46 13 32 45 ecase ANWSPathsNOnGB=wANWWalksNOnGB|ffASPathsOnGBw