Metamath Proof Explorer


Theorem itg2lea

Description: Approximate version of itg2le . If F <_ G for almost all x , then S.2 F <_ S.2 G . (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itg2lea.1 φF:0+∞
itg2lea.2 φG:0+∞
itg2lea.3 φA
itg2lea.4 φvol*A=0
itg2lea.5 φxAFxGx
Assertion itg2lea φ2F2G

Proof

Step Hyp Ref Expression
1 itg2lea.1 φF:0+∞
2 itg2lea.2 φG:0+∞
3 itg2lea.3 φA
4 itg2lea.4 φvol*A=0
5 itg2lea.5 φxAFxGx
6 2 adantr φfdom1ffFG:0+∞
7 simprl φfdom1ffFfdom1
8 3 adantr φfdom1ffFA
9 4 adantr φfdom1ffFvol*A=0
10 i1ff fdom1f:
11 10 ad2antrl φfdom1ffFf:
12 eldifi xAx
13 ffvelcdm f:xfx
14 11 12 13 syl2an φfdom1ffFxAfx
15 14 rexrd φfdom1ffFxAfx*
16 iccssxr 0+∞*
17 1 adantr φfdom1ffFF:0+∞
18 ffvelcdm F:0+∞xFx0+∞
19 17 12 18 syl2an φfdom1ffFxAFx0+∞
20 16 19 sselid φfdom1ffFxAFx*
21 ffvelcdm G:0+∞xGx0+∞
22 6 12 21 syl2an φfdom1ffFxAGx0+∞
23 16 22 sselid φfdom1ffFxAGx*
24 simprr φfdom1ffFffF
25 11 ffnd φfdom1ffFfFn
26 17 ffnd φfdom1ffFFFn
27 reex V
28 27 a1i φfdom1ffFV
29 inidm =
30 eqidd φfdom1ffFxfx=fx
31 eqidd φfdom1ffFxFx=Fx
32 25 26 28 28 29 30 31 ofrfval φfdom1ffFffFxfxFx
33 24 32 mpbid φfdom1ffFxfxFx
34 33 r19.21bi φfdom1ffFxfxFx
35 12 34 sylan2 φfdom1ffFxAfxFx
36 5 adantlr φfdom1ffFxAFxGx
37 15 20 23 35 36 xrletrd φfdom1ffFxAfxGx
38 6 7 8 9 37 itg2uba φfdom1ffF1f2G
39 38 expr φfdom1ffF1f2G
40 39 ralrimiva φfdom1ffF1f2G
41 itg2cl G:0+∞2G*
42 2 41 syl φ2G*
43 itg2leub F:0+∞2G*2F2Gfdom1ffF1f2G
44 1 42 43 syl2anc φ2F2Gfdom1ffF1f2G
45 40 44 mpbird φ2F2G