Description: The S. integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itgspliticc.1 | |
|
itgspliticc.2 | |
||
itgspliticc.3 | |
||
itgspliticc.4 | |
||
itgspliticc.5 | |
||
itgspliticc.6 | |
||
Assertion | itgspliticc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgspliticc.1 | |
|
2 | itgspliticc.2 | |
|
3 | itgspliticc.3 | |
|
4 | itgspliticc.4 | |
|
5 | itgspliticc.5 | |
|
6 | itgspliticc.6 | |
|
7 | 1 | rexrd | |
8 | elicc2 | |
|
9 | 1 2 8 | syl2anc | |
10 | 3 9 | mpbid | |
11 | 10 | simp1d | |
12 | 11 | rexrd | |
13 | 2 | rexrd | |
14 | df-icc | |
|
15 | xrmaxle | |
|
16 | xrlemin | |
|
17 | 14 15 16 | ixxin | |
18 | 7 12 12 13 17 | syl22anc | |
19 | 10 | simp2d | |
20 | 19 | iftrued | |
21 | 10 | simp3d | |
22 | 21 | iftrued | |
23 | 20 22 | oveq12d | |
24 | iccid | |
|
25 | 12 24 | syl | |
26 | 18 23 25 | 3eqtrd | |
27 | 26 | fveq2d | |
28 | ovolsn | |
|
29 | 11 28 | syl | |
30 | 27 29 | eqtrd | |
31 | iccsplit | |
|
32 | 1 2 3 31 | syl3anc | |
33 | 30 32 4 5 6 | itgsplit | |