Metamath Proof Explorer


Theorem itgspliticc

Description: The S. integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypotheses itgspliticc.1 φA
itgspliticc.2 φC
itgspliticc.3 φBAC
itgspliticc.4 φxACDV
itgspliticc.5 φxABD𝐿1
itgspliticc.6 φxBCD𝐿1
Assertion itgspliticc φACDdx=ABDdx+BCDdx

Proof

Step Hyp Ref Expression
1 itgspliticc.1 φA
2 itgspliticc.2 φC
3 itgspliticc.3 φBAC
4 itgspliticc.4 φxACDV
5 itgspliticc.5 φxABD𝐿1
6 itgspliticc.6 φxBCD𝐿1
7 1 rexrd φA*
8 elicc2 ACBACBABBC
9 1 2 8 syl2anc φBACBABBC
10 3 9 mpbid φBABBC
11 10 simp1d φB
12 11 rexrd φB*
13 2 rexrd φC*
14 df-icc .=x*,y*z*|xzzy
15 xrmaxle A*B*z*ifABBAzAzBz
16 xrlemin z*B*C*zifBCBCzBzC
17 14 15 16 ixxin A*B*B*C*ABBC=ifABBAifBCBC
18 7 12 12 13 17 syl22anc φABBC=ifABBAifBCBC
19 10 simp2d φAB
20 19 iftrued φifABBA=B
21 10 simp3d φBC
22 21 iftrued φifBCBC=B
23 20 22 oveq12d φifABBAifBCBC=BB
24 iccid B*BB=B
25 12 24 syl φBB=B
26 18 23 25 3eqtrd φABBC=B
27 26 fveq2d φvol*ABBC=vol*B
28 ovolsn Bvol*B=0
29 11 28 syl φvol*B=0
30 27 29 eqtrd φvol*ABBC=0
31 iccsplit ACBACAC=ABBC
32 1 2 3 31 syl3anc φAC=ABBC
33 30 32 4 5 6 itgsplit φACDdx=ABDdx+BCDdx