Description: Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itgss.1 | |
|
itgss.2 | |
||
Assertion | itgss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgss.1 | |
|
2 | itgss.2 | |
|
3 | elfzelz | |
|
4 | iffalse | |
|
5 | 4 | ad2antll | |
6 | eldif | |
|
7 | 2 | adantlr | |
8 | 7 | oveq1d | |
9 | ax-icn | |
|
10 | ine0 | |
|
11 | expclz | |
|
12 | 9 10 11 | mp3an12 | |
13 | expne0i | |
|
14 | 9 10 13 | mp3an12 | |
15 | 12 14 | div0d | |
16 | 15 | ad2antlr | |
17 | 8 16 | eqtrd | |
18 | 17 | fveq2d | |
19 | re0 | |
|
20 | 18 19 | eqtrdi | |
21 | 20 | ifeq1d | |
22 | ifid | |
|
23 | 21 22 | eqtrdi | |
24 | 6 23 | sylan2br | |
25 | 5 24 | eqtr4d | |
26 | 25 | expr | |
27 | iftrue | |
|
28 | 26 27 | pm2.61d2 | |
29 | iftrue | |
|
30 | 29 | adantl | |
31 | 28 30 | eqtr4d | |
32 | 1 | adantr | |
33 | 32 | sseld | |
34 | 33 | con3dimp | |
35 | 34 4 | syl | |
36 | iffalse | |
|
37 | 36 | adantl | |
38 | 35 37 | eqtr4d | |
39 | 31 38 | pm2.61dan | |
40 | ifan | |
|
41 | ifan | |
|
42 | 39 40 41 | 3eqtr4g | |
43 | 42 | mpteq2dv | |
44 | 43 | fveq2d | |
45 | 44 | oveq2d | |
46 | 3 45 | sylan2 | |
47 | 46 | sumeq2dv | |
48 | eqid | |
|
49 | 48 | dfitg | |
50 | 48 | dfitg | |
51 | 47 49 50 | 3eqtr4g | |