Metamath Proof Explorer


Theorem itscnhlinecirc02plem1

Description: Lemma 1 for itscnhlinecirc02p . (Contributed by AV, 6-Mar-2023)

Ref Expression
Hypotheses 2itscp.a φA
2itscp.b φB
2itscp.x φX
2itscp.y φY
2itscp.d D=XA
2itscp.e E=BY
2itscp.c C=DB+EA
2itscp.r φR
2itscp.l φA2+B2<R2
itscnhlinecirc02plem1.n φBY
Assertion itscnhlinecirc02plem1 φ0<2DC24E2+D2C2E2R2

Proof

Step Hyp Ref Expression
1 2itscp.a φA
2 2itscp.b φB
3 2itscp.x φX
4 2itscp.y φY
5 2itscp.d D=XA
6 2itscp.e E=BY
7 2itscp.c C=DB+EA
8 2itscp.r φR
9 2itscp.l φA2+B2<R2
10 itscnhlinecirc02plem1.n φBY
11 4re 4
12 11 a1i φ4
13 3 1 resubcld φXA
14 5 13 eqeltrid φD
15 14 resqcld φD2
16 14 2 remulcld φDB
17 2 4 resubcld φBY
18 6 17 eqeltrid φE
19 18 1 remulcld φEA
20 16 19 readdcld φDB+EA
21 7 20 eqeltrid φC
22 21 resqcld φC2
23 15 22 remulcld φD2C2
24 18 resqcld φE2
25 24 15 readdcld φE2+D2
26 8 resqcld φR2
27 24 26 remulcld φE2R2
28 22 27 resubcld φC2E2R2
29 25 28 remulcld φE2+D2C2E2R2
30 23 29 resubcld φD2C2E2+D2C2E2R2
31 4pos 0<4
32 31 a1i φ0<4
33 15 26 remulcld φD2R2
34 27 33 readdcld φE2R2+D2R2
35 34 22 resubcld φE2R2+D2R2-C2
36 6 a1i φE=BY
37 2 recnd φB
38 4 recnd φY
39 37 38 10 subne0d φBY0
40 36 39 eqnetrd φE0
41 18 40 sqgt0d φ0<E2
42 10 orcd φBYAX
43 eqid E2+D2=E2+D2
44 eqid R2E2+D2C2=R2E2+D2C2
45 1 2 3 4 5 6 7 8 9 42 43 44 2itscp φ0<R2E2+D2C2
46 24 recnd φE2
47 15 recnd φD2
48 26 recnd φR2
49 46 47 48 adddird φE2+D2R2=E2R2+D2R2
50 46 47 addcld φE2+D2
51 50 48 mulcomd φE2+D2R2=R2E2+D2
52 49 51 eqtr3d φE2R2+D2R2=R2E2+D2
53 52 oveq1d φE2R2+D2R2-C2=R2E2+D2C2
54 45 53 breqtrrd φ0<E2R2+D2R2-C2
55 24 35 41 54 mulgt0d φ0<E2E2R2+D2R2-C2
56 47 46 48 mul12d φD2E2R2=E2D2R2
57 56 oveq2d φE2E2R2+D2E2R2=E2E2R2+E2D2R2
58 46 48 mulcld φE2R2
59 47 48 mulcld φD2R2
60 46 58 59 adddid φE2E2R2+D2R2=E2E2R2+E2D2R2
61 57 60 eqtr4d φE2E2R2+D2E2R2=E2E2R2+D2R2
62 61 oveq1d φE2E2R2+D2E2R2-E2C2=E2E2R2+D2R2E2C2
63 58 59 addcld φE2R2+D2R2
64 22 recnd φC2
65 46 63 64 subdid φE2E2R2+D2R2-C2=E2E2R2+D2R2E2C2
66 62 65 eqtr4d φE2E2R2+D2E2R2-E2C2=E2E2R2+D2R2-C2
67 55 66 breqtrrd φ0<E2E2R2+D2E2R2-E2C2
68 18 recnd φE
69 68 sqcld φE2
70 14 recnd φD
71 70 sqcld φD2
72 27 recnd φE2R2
73 mulsubaddmulsub E2D2C2E2R2D2C2E2+D2C2E2R2=E2E2R2+D2E2R2-E2C2
74 69 71 64 72 73 syl22anc φD2C2E2+D2C2E2R2=E2E2R2+D2E2R2-E2C2
75 67 74 breqtrrd φ0<D2C2E2+D2C2E2R2
76 12 30 32 75 mulgt0d φ0<4D2C2E2+D2C2E2R2
77 4cn 4
78 77 a1i φ4
79 21 recnd φC
80 79 sqcld φC2
81 71 80 mulcld φD2C2
82 69 71 addcld φE2+D2
83 8 recnd φR
84 83 sqcld φR2
85 69 84 mulcld φE2R2
86 80 85 subcld φC2E2R2
87 82 86 mulcld φE2+D2C2E2R2
88 78 81 87 subdid φ4D2C2E2+D2C2E2R2=4D2C24E2+D2C2E2R2
89 76 88 breqtrd φ0<4D2C24E2+D2C2E2R2
90 2cnd φ2
91 70 79 mulcld φDC
92 90 91 mulcld φ2DC
93 sqneg 2DC2DC2=2DC2
94 92 93 syl φ2DC2=2DC2
95 90 91 sqmuld φ2DC2=22DC2
96 sq2 22=4
97 96 a1i φ22=4
98 70 79 sqmuld φDC2=D2C2
99 97 98 oveq12d φ22DC2=4D2C2
100 94 95 99 3eqtrd φ2DC2=4D2C2
101 100 oveq1d φ2DC24E2+D2C2E2R2=4D2C24E2+D2C2E2R2
102 89 101 breqtrrd φ0<2DC24E2+D2C2E2R2