Description: Lemma for iuneqfzuz : here, inclusion is proven; aiuneqfzuz uses this lemma twice, to prove equality. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iuneqfzuzlem.z | |
|
Assertion | iuneqfzuzlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneqfzuzlem.z | |
|
2 | nfcv | |
|
3 | nfcsb1v | |
|
4 | csbeq1a | |
|
5 | 2 3 4 | cbviun | |
6 | 5 | eleq2i | |
7 | eliun | |
|
8 | 6 7 | bitri | |
9 | 8 | biimpi | |
10 | 9 | adantl | |
11 | nfra1 | |
|
12 | nfv | |
|
13 | simp2 | |
|
14 | rspa | |
|
15 | 14 | 3adant3 | |
16 | simp3 | |
|
17 | id | |
|
18 | fzssuz | |
|
19 | 1 | eqcomi | |
20 | 18 19 | sseqtri | |
21 | iunss1 | |
|
22 | 20 21 | mp1i | |
23 | 17 22 | eqsstrd | |
24 | 23 | 3ad2ant2 | |
25 | 1 | eleq2i | |
26 | 25 | biimpi | |
27 | eluzel2 | |
|
28 | 26 27 | syl | |
29 | eluzelz | |
|
30 | 26 29 | syl | |
31 | eluzle | |
|
32 | 26 31 | syl | |
33 | 30 | zred | |
34 | leid | |
|
35 | 33 34 | syl | |
36 | 28 30 30 32 35 | elfzd | |
37 | nfcv | |
|
38 | 37 3 | nfel | |
39 | 4 | eleq2d | |
40 | 38 39 | rspce | |
41 | 36 40 | sylan | |
42 | eliun | |
|
43 | 41 42 | sylibr | |
44 | 43 | 3adant2 | |
45 | 24 44 | sseldd | |
46 | 13 15 16 45 | syl3anc | |
47 | 46 | 3exp | |
48 | 11 12 47 | rexlimd | |
49 | 48 | adantr | |
50 | 10 49 | mpd | |
51 | 50 | ralrimiva | |
52 | dfss3 | |
|
53 | 51 52 | sylibr | |