Metamath Proof Explorer


Theorem iunfo

Description: Existence of an onto function from a disjoint union to a union. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 18-Jan-2014)

Ref Expression
Hypothesis iunfo.1 T=xAx×B
Assertion iunfo 2ndT:TontoxAB

Proof

Step Hyp Ref Expression
1 iunfo.1 T=xAx×B
2 fo2nd 2nd:VontoV
3 fof 2nd:VontoV2nd:VV
4 ffn 2nd:VV2ndFnV
5 2 3 4 mp2b 2ndFnV
6 ssv TV
7 fnssres 2ndFnVTV2ndTFnT
8 5 6 7 mp2an 2ndTFnT
9 df-ima 2ndT=ran2ndT
10 1 eleq2i zTzxAx×B
11 eliun zxAx×BxAzx×B
12 10 11 bitri zTxAzx×B
13 xp2nd zx×B2ndzB
14 eleq1 2ndz=y2ndzByB
15 13 14 imbitrid 2ndz=yzx×ByB
16 15 reximdv 2ndz=yxAzx×BxAyB
17 12 16 biimtrid 2ndz=yzTxAyB
18 17 impcom zT2ndz=yxAyB
19 18 rexlimiva zT2ndz=yxAyB
20 nfiu1 _xxAx×B
21 1 20 nfcxfr _xT
22 nfv x2ndz=y
23 21 22 nfrexw xzT2ndz=y
24 ssiun2 xAx×BxAx×B
25 24 adantr xAyBx×BxAx×B
26 simpr xAyByB
27 vsnid xx
28 opelxp xyx×BxxyB
29 27 28 mpbiran xyx×ByB
30 26 29 sylibr xAyBxyx×B
31 25 30 sseldd xAyBxyxAx×B
32 31 1 eleqtrrdi xAyBxyT
33 vex xV
34 vex yV
35 33 34 op2nd 2ndxy=y
36 fveqeq2 z=xy2ndz=y2ndxy=y
37 36 rspcev xyT2ndxy=yzT2ndz=y
38 32 35 37 sylancl xAyBzT2ndz=y
39 38 ex xAyBzT2ndz=y
40 23 39 rexlimi xAyBzT2ndz=y
41 19 40 impbii zT2ndz=yxAyB
42 fvelimab 2ndFnVTVy2ndTzT2ndz=y
43 5 6 42 mp2an y2ndTzT2ndz=y
44 eliun yxABxAyB
45 41 43 44 3bitr4i y2ndTyxAB
46 45 eqriv 2ndT=xAB
47 9 46 eqtr3i ran2ndT=xAB
48 df-fo 2ndT:TontoxAB2ndTFnTran2ndT=xAB
49 8 47 48 mpbir2an 2ndT:TontoxAB