| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iunincfi.1 |  | 
						
							| 2 |  | iunincfi.2 |  | 
						
							| 3 |  | eliun |  | 
						
							| 4 | 3 | biimpi |  | 
						
							| 5 | 4 | adantl |  | 
						
							| 6 |  | elfzuz3 |  | 
						
							| 7 | 6 | adantl |  | 
						
							| 8 |  | simpll |  | 
						
							| 9 |  | elfzuz |  | 
						
							| 10 |  | fzoss1 |  | 
						
							| 11 | 9 10 | syl |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 12 13 | sseldd |  | 
						
							| 15 | 14 | adantll |  | 
						
							| 16 |  | eleq1w |  | 
						
							| 17 | 16 | anbi2d |  | 
						
							| 18 |  | fveq2 |  | 
						
							| 19 |  | fvoveq1 |  | 
						
							| 20 | 18 19 | sseq12d |  | 
						
							| 21 | 17 20 | imbi12d |  | 
						
							| 22 | 21 2 | chvarvv |  | 
						
							| 23 | 8 15 22 | syl2anc |  | 
						
							| 24 | 7 23 | ssinc |  | 
						
							| 25 | 24 | 3adant3 |  | 
						
							| 26 |  | simp3 |  | 
						
							| 27 | 25 26 | sseldd |  | 
						
							| 28 | 27 | 3exp |  | 
						
							| 29 | 28 | rexlimdv |  | 
						
							| 30 | 29 | imp |  | 
						
							| 31 | 5 30 | syldan |  | 
						
							| 32 | 31 | ralrimiva |  | 
						
							| 33 |  | dfss3 |  | 
						
							| 34 | 32 33 | sylibr |  | 
						
							| 35 |  | eluzfz2 |  | 
						
							| 36 | 1 35 | syl |  | 
						
							| 37 |  | fveq2 |  | 
						
							| 38 | 37 | ssiun2s |  | 
						
							| 39 | 36 38 | syl |  | 
						
							| 40 | 34 39 | eqssd |  |