Metamath Proof Explorer


Theorem iunincfi

Description: Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iunincfi.1 φ N M
iunincfi.2 φ n M ..^ N F n F n + 1
Assertion iunincfi φ n = M N F n = F N

Proof

Step Hyp Ref Expression
1 iunincfi.1 φ N M
2 iunincfi.2 φ n M ..^ N F n F n + 1
3 eliun x n = M N F n n M N x F n
4 3 biimpi x n = M N F n n M N x F n
5 4 adantl φ x n = M N F n n M N x F n
6 elfzuz3 n M N N n
7 6 adantl φ n M N N n
8 simpll φ n M N m n ..^ N φ
9 elfzuz n M N n M
10 fzoss1 n M n ..^ N M ..^ N
11 9 10 syl n M N n ..^ N M ..^ N
12 11 adantr n M N m n ..^ N n ..^ N M ..^ N
13 simpr n M N m n ..^ N m n ..^ N
14 12 13 sseldd n M N m n ..^ N m M ..^ N
15 14 adantll φ n M N m n ..^ N m M ..^ N
16 eleq1w n = m n M ..^ N m M ..^ N
17 16 anbi2d n = m φ n M ..^ N φ m M ..^ N
18 fveq2 n = m F n = F m
19 fvoveq1 n = m F n + 1 = F m + 1
20 18 19 sseq12d n = m F n F n + 1 F m F m + 1
21 17 20 imbi12d n = m φ n M ..^ N F n F n + 1 φ m M ..^ N F m F m + 1
22 21 2 chvarvv φ m M ..^ N F m F m + 1
23 8 15 22 syl2anc φ n M N m n ..^ N F m F m + 1
24 7 23 ssinc φ n M N F n F N
25 24 3adant3 φ n M N x F n F n F N
26 simp3 φ n M N x F n x F n
27 25 26 sseldd φ n M N x F n x F N
28 27 3exp φ n M N x F n x F N
29 28 rexlimdv φ n M N x F n x F N
30 29 imp φ n M N x F n x F N
31 5 30 syldan φ x n = M N F n x F N
32 31 ralrimiva φ x n = M N F n x F N
33 dfss3 n = M N F n F N x n = M N F n x F N
34 32 33 sylibr φ n = M N F n F N
35 eluzfz2 N M N M N
36 1 35 syl φ N M N
37 fveq2 n = N F n = F N
38 37 ssiun2s N M N F N n = M N F n
39 36 38 syl φ F N n = M N F n
40 34 39 eqssd φ n = M N F n = F N