Metamath Proof Explorer


Theorem iunincfi

Description: Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iunincfi.1 φNM
iunincfi.2 φnM..^NFnFn+1
Assertion iunincfi φn=MNFn=FN

Proof

Step Hyp Ref Expression
1 iunincfi.1 φNM
2 iunincfi.2 φnM..^NFnFn+1
3 eliun xn=MNFnnMNxFn
4 3 biimpi xn=MNFnnMNxFn
5 4 adantl φxn=MNFnnMNxFn
6 elfzuz3 nMNNn
7 6 adantl φnMNNn
8 simpll φnMNmn..^Nφ
9 elfzuz nMNnM
10 fzoss1 nMn..^NM..^N
11 9 10 syl nMNn..^NM..^N
12 11 adantr nMNmn..^Nn..^NM..^N
13 simpr nMNmn..^Nmn..^N
14 12 13 sseldd nMNmn..^NmM..^N
15 14 adantll φnMNmn..^NmM..^N
16 eleq1w n=mnM..^NmM..^N
17 16 anbi2d n=mφnM..^NφmM..^N
18 fveq2 n=mFn=Fm
19 fvoveq1 n=mFn+1=Fm+1
20 18 19 sseq12d n=mFnFn+1FmFm+1
21 17 20 imbi12d n=mφnM..^NFnFn+1φmM..^NFmFm+1
22 21 2 chvarvv φmM..^NFmFm+1
23 8 15 22 syl2anc φnMNmn..^NFmFm+1
24 7 23 ssinc φnMNFnFN
25 24 3adant3 φnMNxFnFnFN
26 simp3 φnMNxFnxFn
27 25 26 sseldd φnMNxFnxFN
28 27 3exp φnMNxFnxFN
29 28 rexlimdv φnMNxFnxFN
30 29 imp φnMNxFnxFN
31 5 30 syldan φxn=MNFnxFN
32 31 ralrimiva φxn=MNFnxFN
33 dfss3 n=MNFnFNxn=MNFnxFN
34 32 33 sylibr φn=MNFnFN
35 eluzfz2 NMNMN
36 1 35 syl φNMN
37 fveq2 n=NFn=FN
38 37 ssiun2s NMNFNn=MNFn
39 36 38 syl φFNn=MNFn
40 34 39 eqssd φn=MNFn=FN