Description: Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iunincfi.1 | |
|
iunincfi.2 | |
||
Assertion | iunincfi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunincfi.1 | |
|
2 | iunincfi.2 | |
|
3 | eliun | |
|
4 | 3 | biimpi | |
5 | 4 | adantl | |
6 | elfzuz3 | |
|
7 | 6 | adantl | |
8 | simpll | |
|
9 | elfzuz | |
|
10 | fzoss1 | |
|
11 | 9 10 | syl | |
12 | 11 | adantr | |
13 | simpr | |
|
14 | 12 13 | sseldd | |
15 | 14 | adantll | |
16 | eleq1w | |
|
17 | 16 | anbi2d | |
18 | fveq2 | |
|
19 | fvoveq1 | |
|
20 | 18 19 | sseq12d | |
21 | 17 20 | imbi12d | |
22 | 21 2 | chvarvv | |
23 | 8 15 22 | syl2anc | |
24 | 7 23 | ssinc | |
25 | 24 | 3adant3 | |
26 | simp3 | |
|
27 | 25 26 | sseldd | |
28 | 27 | 3exp | |
29 | 28 | rexlimdv | |
30 | 29 | imp | |
31 | 5 30 | syldan | |
32 | 31 | ralrimiva | |
33 | dfss3 | |
|
34 | 32 33 | sylibr | |
35 | eluzfz2 | |
|
36 | 1 35 | syl | |
37 | fveq2 | |
|
38 | 37 | ssiun2s | |
39 | 36 38 | syl | |
40 | 34 39 | eqssd | |