Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
|
2 |
|
nfcsb1v |
|
3 |
2
|
nfel1 |
|
4 |
|
csbeq1a |
|
5 |
4
|
eleq1d |
|
6 |
1 3 5
|
cbvralw |
|
7 |
|
nfcv |
|
8 |
7 2 4
|
cbviun |
|
9 |
|
csbeq1 |
|
10 |
9
|
iundisj |
|
11 |
8 10
|
eqtri |
|
12 |
|
difexg |
|
13 |
12
|
ralimi |
|
14 |
|
dfiun2g |
|
15 |
13 14
|
syl |
|
16 |
11 15
|
eqtrid |
|
17 |
6 16
|
sylbi |
|
18 |
|
eqid |
|
19 |
18
|
rnmpt |
|
20 |
19
|
unieqi |
|
21 |
17 20
|
eqtr4di |
|
22 |
3 5
|
rspc |
|
23 |
22
|
impcom |
|
24 |
|
fzofi |
|
25 |
|
nfv |
|
26 |
|
nfcsb1v |
|
27 |
26
|
nfel1 |
|
28 |
|
csbeq1a |
|
29 |
28
|
eleq1d |
|
30 |
25 27 29
|
cbvralw |
|
31 |
|
fzossnn |
|
32 |
|
ssralv |
|
33 |
31 32
|
ax-mp |
|
34 |
30 33
|
sylbi |
|
35 |
34
|
adantr |
|
36 |
|
finiunmbl |
|
37 |
24 35 36
|
sylancr |
|
38 |
|
difmbl |
|
39 |
23 37 38
|
syl2anc |
|
40 |
39
|
fmpttd |
|
41 |
|
csbeq1 |
|
42 |
41
|
iundisj2 |
|
43 |
|
csbeq1 |
|
44 |
|
oveq2 |
|
45 |
44
|
iuneq1d |
|
46 |
43 45
|
difeq12d |
|
47 |
|
simpr |
|
48 |
|
nfcsb1v |
|
49 |
48
|
nfel1 |
|
50 |
|
csbeq1a |
|
51 |
50
|
eleq1d |
|
52 |
49 51
|
rspc |
|
53 |
52
|
impcom |
|
54 |
53
|
difexd |
|
55 |
18 46 47 54
|
fvmptd3 |
|
56 |
55
|
disjeq2dv |
|
57 |
42 56
|
mpbiri |
|
58 |
|
eqid |
|
59 |
40 57 58
|
voliunlem2 |
|
60 |
21 59
|
eqeltrd |
|