Metamath Proof Explorer


Theorem jm2.16nn0

Description: Lemma 2.16 of JonesMatijasevic p. 695. This may be regarded as a special case of jm2.15nn0 if rmY is redefined as described in rmyluc . (Contributed by Stefan O'Rear, 1-Oct-2014)

Ref Expression
Assertion jm2.16nn0 A2N0A1AYrmNN

Proof

Step Hyp Ref Expression
1 eluzelz A2A
2 peano2zm AA1
3 1 2 syl A2A1
4 0z 0
5 congid A10A100
6 3 4 5 sylancl A2A100
7 rmy0 A2AYrm0=0
8 7 oveq1d A2AYrm00=00
9 6 8 breqtrrd A2A1AYrm00
10 1z 1
11 congid A11A111
12 3 10 11 sylancl A2A111
13 rmy1 A2AYrm1=1
14 13 oveq1d A2AYrm11=11
15 12 14 breqtrrd A2A1AYrm11
16 pm3.43 A2A1AYrmb1b1A2A1AYrmbbA2A1AYrmb1b1A1AYrmbb
17 1 adantl bA2A
18 17 2 syl bA2A1
19 eluzel2 A22
20 19 adantl bA22
21 simpr bA2A2
22 nnz bb
23 22 adantr bA2b
24 frmy Yrm:2×
25 24 fovcl A2bAYrmb
26 21 23 25 syl2anc bA2AYrmb
27 26 17 zmulcld bA2AYrmbA
28 20 27 zmulcld bA22AYrmbA
29 zmulcl b1b1
30 23 10 29 sylancl bA2b1
31 20 30 zmulcld bA22b1
32 18 28 31 3jca bA2A12AYrmbA2b1
33 32 3adant3 bA2A1AYrmb1b1A1AYrmbbA12AYrmbA2b1
34 peano2zm bb1
35 23 34 syl bA2b1
36 24 fovcl A2b1AYrmb1
37 21 35 36 syl2anc bA2AYrmb1
38 37 35 jca bA2AYrmb1b1
39 38 3adant3 bA2A1AYrmb1b1A1AYrmbbAYrmb1b1
40 18 20 20 3jca bA2A122
41 40 3adant3 bA2A1AYrmb1b1A1AYrmbbA122
42 27 30 jca bA2AYrmbAb1
43 42 3adant3 bA2A1AYrmb1b1A1AYrmbbAYrmbAb1
44 congid A12A122
45 18 20 44 syl2anc bA2A122
46 45 3adant3 bA2A1AYrmb1b1A1AYrmbbA122
47 18 26 23 3jca bA2A1AYrmbb
48 47 3adant3 bA2A1AYrmb1b1A1AYrmbbA1AYrmbb
49 17 10 jctir bA2A1
50 49 3adant3 bA2A1AYrmb1b1A1AYrmbbA1
51 simp3r bA2A1AYrmb1b1A1AYrmbbA1AYrmbb
52 iddvds A1A1A1
53 18 52 syl bA2A1A1
54 53 3adant3 bA2A1AYrmb1b1A1AYrmbbA1A1
55 congmul A1AYrmbbA1A1AYrmbbA1A1A1AYrmbAb1
56 48 50 51 54 55 syl112anc bA2A1AYrmb1b1A1AYrmbbA1AYrmbAb1
57 congmul A122AYrmbAb1A122A1AYrmbAb1A12AYrmbA2b1
58 41 43 46 56 57 syl112anc bA2A1AYrmb1b1A1AYrmbbA12AYrmbA2b1
59 simp3l bA2A1AYrmb1b1A1AYrmbbA1AYrmb1b1
60 congsub A12AYrmbA2b1AYrmb1b1A12AYrmbA2b1A1AYrmb1b1A12AYrmbA-AYrmb1-2b1b1
61 33 39 58 59 60 syl112anc bA2A1AYrmb1b1A1AYrmbbA12AYrmbA-AYrmb1-2b1b1
62 rmyluc A2bAYrmb+1=2AYrmbAAYrmb1
63 21 23 62 syl2anc bA2AYrmb+1=2AYrmbAAYrmb1
64 nncn bb
65 64 mulridd bb1=b
66 65 oveq2d b2b1=2b
67 64 2timesd b2b=b+b
68 66 67 eqtrd b2b1=b+b
69 68 oveq1d b2b1b1=b+b-b1
70 1cnd b1
71 64 64 70 pnncand bb+b-b1=b+1
72 69 71 eqtr2d bb+1=2b1b1
73 72 adantr bA2b+1=2b1b1
74 63 73 oveq12d bA2AYrmb+1b+1=2AYrmbA-AYrmb1-2b1b1
75 74 3adant3 bA2A1AYrmb1b1A1AYrmbbAYrmb+1b+1=2AYrmbA-AYrmb1-2b1b1
76 61 75 breqtrrd bA2A1AYrmb1b1A1AYrmbbA1AYrmb+1b+1
77 76 3exp bA2A1AYrmb1b1A1AYrmbbA1AYrmb+1b+1
78 77 a2d bA2A1AYrmb1b1A1AYrmbbA2A1AYrmb+1b+1
79 16 78 syl5 bA2A1AYrmb1b1A2A1AYrmbbA2A1AYrmb+1b+1
80 oveq2 a=0AYrma=AYrm0
81 id a=0a=0
82 80 81 oveq12d a=0AYrmaa=AYrm00
83 82 breq2d a=0A1AYrmaaA1AYrm00
84 83 imbi2d a=0A2A1AYrmaaA2A1AYrm00
85 oveq2 a=1AYrma=AYrm1
86 id a=1a=1
87 85 86 oveq12d a=1AYrmaa=AYrm11
88 87 breq2d a=1A1AYrmaaA1AYrm11
89 88 imbi2d a=1A2A1AYrmaaA2A1AYrm11
90 oveq2 a=b1AYrma=AYrmb1
91 id a=b1a=b1
92 90 91 oveq12d a=b1AYrmaa=AYrmb1b1
93 92 breq2d a=b1A1AYrmaaA1AYrmb1b1
94 93 imbi2d a=b1A2A1AYrmaaA2A1AYrmb1b1
95 oveq2 a=bAYrma=AYrmb
96 id a=ba=b
97 95 96 oveq12d a=bAYrmaa=AYrmbb
98 97 breq2d a=bA1AYrmaaA1AYrmbb
99 98 imbi2d a=bA2A1AYrmaaA2A1AYrmbb
100 oveq2 a=b+1AYrma=AYrmb+1
101 id a=b+1a=b+1
102 100 101 oveq12d a=b+1AYrmaa=AYrmb+1b+1
103 102 breq2d a=b+1A1AYrmaaA1AYrmb+1b+1
104 103 imbi2d a=b+1A2A1AYrmaaA2A1AYrmb+1b+1
105 oveq2 a=NAYrma=AYrmN
106 id a=Na=N
107 105 106 oveq12d a=NAYrmaa=AYrmNN
108 107 breq2d a=NA1AYrmaaA1AYrmNN
109 108 imbi2d a=NA2A1AYrmaaA2A1AYrmNN
110 9 15 79 84 89 94 99 104 109 2nn0ind N0A2A1AYrmNN
111 110 impcom A2N0A1AYrmNN