| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|
| 2 |
|
peano2zm |
|
| 3 |
2
|
ad2antlr |
|
| 4 |
|
frmy |
|
| 5 |
4
|
fovcl |
|
| 6 |
1 3 5
|
syl2anc |
|
| 7 |
6
|
zred |
|
| 8 |
4
|
fovcl |
|
| 9 |
8
|
zred |
|
| 10 |
9
|
adantr |
|
| 11 |
7 10
|
readdcld |
|
| 12 |
|
0red |
|
| 13 |
|
frmx |
|
| 14 |
13
|
fovcl |
|
| 15 |
14
|
adantr |
|
| 16 |
15
|
nn0red |
|
| 17 |
|
znegcl |
|
| 18 |
17
|
ad2antlr |
|
| 19 |
18
|
peano2zd |
|
| 20 |
4
|
fovcl |
|
| 21 |
1 19 20
|
syl2anc |
|
| 22 |
21
|
zred |
|
| 23 |
4
|
fovcl |
|
| 24 |
1 18 23
|
syl2anc |
|
| 25 |
24
|
zred |
|
| 26 |
|
rmy0 |
|
| 27 |
26
|
ad2antrr |
|
| 28 |
|
simpr |
|
| 29 |
|
zre |
|
| 30 |
29
|
ad2antlr |
|
| 31 |
30
|
le0neg1d |
|
| 32 |
28 31
|
mpbid |
|
| 33 |
|
0zd |
|
| 34 |
|
zleltp1 |
|
| 35 |
33 18 34
|
syl2anc |
|
| 36 |
32 35
|
mpbid |
|
| 37 |
|
ltrmy |
|
| 38 |
1 33 19 37
|
syl3anc |
|
| 39 |
36 38
|
mpbid |
|
| 40 |
27 39
|
eqbrtrrd |
|
| 41 |
|
lermy |
|
| 42 |
1 33 18 41
|
syl3anc |
|
| 43 |
32 42
|
mpbid |
|
| 44 |
27 43
|
eqbrtrrd |
|
| 45 |
22 25 40 44
|
addgtge0d |
|
| 46 |
7
|
recnd |
|
| 47 |
10
|
recnd |
|
| 48 |
46 47
|
negdid |
|
| 49 |
|
rmyneg |
|
| 50 |
1 3 49
|
syl2anc |
|
| 51 |
|
rmyneg |
|
| 52 |
51
|
adantr |
|
| 53 |
50 52
|
oveq12d |
|
| 54 |
|
zcn |
|
| 55 |
54
|
ad2antlr |
|
| 56 |
|
ax-1cn |
|
| 57 |
|
negsubdi |
|
| 58 |
55 56 57
|
sylancl |
|
| 59 |
58
|
oveq2d |
|
| 60 |
59
|
oveq1d |
|
| 61 |
48 53 60
|
3eqtr2d |
|
| 62 |
45 61
|
breqtrrd |
|
| 63 |
11
|
lt0neg1d |
|
| 64 |
62 63
|
mpbird |
|
| 65 |
15
|
nn0ge0d |
|
| 66 |
11 12 16 64 65
|
ltletrd |
|
| 67 |
|
simpll |
|
| 68 |
|
elnnz |
|
| 69 |
68
|
biimpri |
|
| 70 |
69
|
adantll |
|
| 71 |
|
jm2.24nn |
|
| 72 |
67 70 71
|
syl2anc |
|
| 73 |
29
|
adantl |
|
| 74 |
|
0re |
|
| 75 |
|
lelttric |
|
| 76 |
73 74 75
|
sylancl |
|
| 77 |
66 72 76
|
mpjaodan |
|