Metamath Proof Explorer


Theorem kgeni

Description: Property of the open sets in the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgeni A 𝑘Gen J J 𝑡 K Comp A K J 𝑡 K

Proof

Step Hyp Ref Expression
1 inass A K J = A K J
2 in32 A K J = A J K
3 1 2 eqtr3i A K J = A J K
4 df-kgen 𝑘Gen = j Top x 𝒫 j | y 𝒫 j j 𝑡 y Comp x y j 𝑡 y
5 4 mptrcl A 𝑘Gen J J Top
6 5 adantr A 𝑘Gen J J 𝑡 K Comp J Top
7 toptopon2 J Top J TopOn J
8 6 7 sylib A 𝑘Gen J J 𝑡 K Comp J TopOn J
9 simpl A 𝑘Gen J J 𝑡 K Comp A 𝑘Gen J
10 elkgen J TopOn J A 𝑘Gen J A J y 𝒫 J J 𝑡 y Comp A y J 𝑡 y
11 10 biimpa J TopOn J A 𝑘Gen J A J y 𝒫 J J 𝑡 y Comp A y J 𝑡 y
12 8 9 11 syl2anc A 𝑘Gen J J 𝑡 K Comp A J y 𝒫 J J 𝑡 y Comp A y J 𝑡 y
13 12 simpld A 𝑘Gen J J 𝑡 K Comp A J
14 df-ss A J A J = A
15 13 14 sylib A 𝑘Gen J J 𝑡 K Comp A J = A
16 15 ineq1d A 𝑘Gen J J 𝑡 K Comp A J K = A K
17 3 16 eqtrid A 𝑘Gen J J 𝑡 K Comp A K J = A K
18 cmptop J 𝑡 K Comp J 𝑡 K Top
19 18 adantl A 𝑘Gen J J 𝑡 K Comp J 𝑡 K Top
20 restrcl J 𝑡 K Top J V K V
21 20 simprd J 𝑡 K Top K V
22 19 21 syl A 𝑘Gen J J 𝑡 K Comp K V
23 eqid J = J
24 23 restin J Top K V J 𝑡 K = J 𝑡 K J
25 6 22 24 syl2anc A 𝑘Gen J J 𝑡 K Comp J 𝑡 K = J 𝑡 K J
26 simpr A 𝑘Gen J J 𝑡 K Comp J 𝑡 K Comp
27 25 26 eqeltrrd A 𝑘Gen J J 𝑡 K Comp J 𝑡 K J Comp
28 oveq2 y = K J J 𝑡 y = J 𝑡 K J
29 28 eleq1d y = K J J 𝑡 y Comp J 𝑡 K J Comp
30 ineq2 y = K J A y = A K J
31 30 28 eleq12d y = K J A y J 𝑡 y A K J J 𝑡 K J
32 29 31 imbi12d y = K J J 𝑡 y Comp A y J 𝑡 y J 𝑡 K J Comp A K J J 𝑡 K J
33 12 simprd A 𝑘Gen J J 𝑡 K Comp y 𝒫 J J 𝑡 y Comp A y J 𝑡 y
34 inss2 K J J
35 inex1g K V K J V
36 elpwg K J V K J 𝒫 J K J J
37 22 35 36 3syl A 𝑘Gen J J 𝑡 K Comp K J 𝒫 J K J J
38 34 37 mpbiri A 𝑘Gen J J 𝑡 K Comp K J 𝒫 J
39 32 33 38 rspcdva A 𝑘Gen J J 𝑡 K Comp J 𝑡 K J Comp A K J J 𝑡 K J
40 27 39 mpd A 𝑘Gen J J 𝑡 K Comp A K J J 𝑡 K J
41 17 40 eqeltrrd A 𝑘Gen J J 𝑡 K Comp A K J 𝑡 K J
42 41 25 eleqtrrd A 𝑘Gen J J 𝑡 K Comp A K J 𝑡 K