Metamath Proof Explorer


Theorem kgeni

Description: Property of the open sets in the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgeni ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’A∩K∈J↾𝑑K

Proof

Step Hyp Ref Expression
1 inass ⊒A∩Kβˆ©β‹ƒJ=A∩Kβˆ©β‹ƒJ
2 in32 ⊒A∩Kβˆ©β‹ƒJ=Aβˆ©β‹ƒJ∩K
3 1 2 eqtr3i ⊒A∩Kβˆ©β‹ƒJ=Aβˆ©β‹ƒJ∩K
4 df-kgen βŠ’π‘˜Gen=j∈Top⟼xβˆˆπ’«β‹ƒj|βˆ€yβˆˆπ’«β‹ƒjj↾𝑑y∈Compβ†’x∩y∈j↾𝑑y
5 4 mptrcl ⊒Aβˆˆπ‘˜Gen⁑Jβ†’J∈Top
6 5 adantr ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’J∈Top
7 toptopon2 ⊒J∈Top↔J∈TopOn⁑⋃J
8 6 7 sylib ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’J∈TopOn⁑⋃J
9 simpl ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’Aβˆˆπ‘˜Gen⁑J
10 elkgen ⊒J∈TopOn⁑⋃Jβ†’Aβˆˆπ‘˜Gen⁑J↔AβŠ†β‹ƒJβˆ§βˆ€yβˆˆπ’«β‹ƒJJ↾𝑑y∈Compβ†’A∩y∈J↾𝑑y
11 10 biimpa ⊒J∈TopOn⁑⋃J∧Aβˆˆπ‘˜Gen⁑Jβ†’AβŠ†β‹ƒJβˆ§βˆ€yβˆˆπ’«β‹ƒJJ↾𝑑y∈Compβ†’A∩y∈J↾𝑑y
12 8 9 11 syl2anc ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’AβŠ†β‹ƒJβˆ§βˆ€yβˆˆπ’«β‹ƒJJ↾𝑑y∈Compβ†’A∩y∈J↾𝑑y
13 12 simpld ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’AβŠ†β‹ƒJ
14 df-ss ⊒AβŠ†β‹ƒJ↔Aβˆ©β‹ƒJ=A
15 13 14 sylib ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’Aβˆ©β‹ƒJ=A
16 15 ineq1d ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’Aβˆ©β‹ƒJ∩K=A∩K
17 3 16 eqtrid ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’A∩Kβˆ©β‹ƒJ=A∩K
18 cmptop ⊒J↾𝑑K∈Compβ†’J↾𝑑K∈Top
19 18 adantl ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’J↾𝑑K∈Top
20 restrcl ⊒J↾𝑑K∈Topβ†’J∈V∧K∈V
21 20 simprd ⊒J↾𝑑K∈Topβ†’K∈V
22 19 21 syl ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’K∈V
23 eqid βŠ’β‹ƒJ=⋃J
24 23 restin ⊒J∈Top∧K∈Vβ†’J↾𝑑K=J↾𝑑Kβˆ©β‹ƒJ
25 6 22 24 syl2anc ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’J↾𝑑K=J↾𝑑Kβˆ©β‹ƒJ
26 simpr ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’J↾𝑑K∈Comp
27 25 26 eqeltrrd ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’J↾𝑑Kβˆ©β‹ƒJ∈Comp
28 oveq2 ⊒y=Kβˆ©β‹ƒJβ†’J↾𝑑y=J↾𝑑Kβˆ©β‹ƒJ
29 28 eleq1d ⊒y=Kβˆ©β‹ƒJβ†’J↾𝑑y∈Comp↔J↾𝑑Kβˆ©β‹ƒJ∈Comp
30 ineq2 ⊒y=Kβˆ©β‹ƒJβ†’A∩y=A∩Kβˆ©β‹ƒJ
31 30 28 eleq12d ⊒y=Kβˆ©β‹ƒJβ†’A∩y∈J↾𝑑y↔A∩Kβˆ©β‹ƒJ∈J↾𝑑Kβˆ©β‹ƒJ
32 29 31 imbi12d ⊒y=Kβˆ©β‹ƒJβ†’J↾𝑑y∈Compβ†’A∩y∈J↾𝑑y↔J↾𝑑Kβˆ©β‹ƒJ∈Compβ†’A∩Kβˆ©β‹ƒJ∈J↾𝑑Kβˆ©β‹ƒJ
33 12 simprd ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’βˆ€yβˆˆπ’«β‹ƒJJ↾𝑑y∈Compβ†’A∩y∈J↾𝑑y
34 inss2 ⊒Kβˆ©β‹ƒJβŠ†β‹ƒJ
35 inex1g ⊒K∈Vβ†’Kβˆ©β‹ƒJ∈V
36 elpwg ⊒Kβˆ©β‹ƒJ∈Vβ†’Kβˆ©β‹ƒJβˆˆπ’«β‹ƒJ↔Kβˆ©β‹ƒJβŠ†β‹ƒJ
37 22 35 36 3syl ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’Kβˆ©β‹ƒJβˆˆπ’«β‹ƒJ↔Kβˆ©β‹ƒJβŠ†β‹ƒJ
38 34 37 mpbiri ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’Kβˆ©β‹ƒJβˆˆπ’«β‹ƒJ
39 32 33 38 rspcdva ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’J↾𝑑Kβˆ©β‹ƒJ∈Compβ†’A∩Kβˆ©β‹ƒJ∈J↾𝑑Kβˆ©β‹ƒJ
40 27 39 mpd ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’A∩Kβˆ©β‹ƒJ∈J↾𝑑Kβˆ©β‹ƒJ
41 17 40 eqeltrrd ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’A∩K∈J↾𝑑Kβˆ©β‹ƒJ
42 41 25 eleqtrrd ⊒Aβˆˆπ‘˜Gen⁑J∧J↾𝑑K∈Compβ†’A∩K∈J↾𝑑K