Metamath Proof Explorer


Theorem lautcvr

Description: Covering property of a lattice automorphism. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses lautcvr.b B=BaseK
lautcvr.c C=K
lautcvr.i I=LAutK
Assertion lautcvr KAFIXBYBXCYFXCFY

Proof

Step Hyp Ref Expression
1 lautcvr.b B=BaseK
2 lautcvr.c C=K
3 lautcvr.i I=LAutK
4 eqid <K=<K
5 1 4 3 lautlt KAFIXBYBX<KYFX<KFY
6 simpll KAFIXBYBwBKA
7 simplr1 KAFIXBYBwBFI
8 simplr2 KAFIXBYBwBXB
9 simpr KAFIXBYBwBwB
10 1 4 3 lautlt KAFIXBwBX<KwFX<KFw
11 6 7 8 9 10 syl13anc KAFIXBYBwBX<KwFX<KFw
12 simplr3 KAFIXBYBwBYB
13 1 4 3 lautlt KAFIwBYBw<KYFw<KFY
14 6 7 9 12 13 syl13anc KAFIXBYBwBw<KYFw<KFY
15 11 14 anbi12d KAFIXBYBwBX<Kww<KYFX<KFwFw<KFY
16 1 3 lautcl KAFIwBFwB
17 6 7 9 16 syl21anc KAFIXBYBwBFwB
18 breq2 z=FwFX<KzFX<KFw
19 breq1 z=Fwz<KFYFw<KFY
20 18 19 anbi12d z=FwFX<Kzz<KFYFX<KFwFw<KFY
21 20 rspcev FwBFX<KFwFw<KFYzBFX<Kzz<KFY
22 21 ex FwBFX<KFwFw<KFYzBFX<Kzz<KFY
23 17 22 syl KAFIXBYBwBFX<KFwFw<KFYzBFX<Kzz<KFY
24 15 23 sylbid KAFIXBYBwBX<Kww<KYzBFX<Kzz<KFY
25 24 rexlimdva KAFIXBYBwBX<Kww<KYzBFX<Kzz<KFY
26 simpll KAFIXBYBzBKA
27 simplr1 KAFIXBYBzBFI
28 simplr2 KAFIXBYBzBXB
29 1 3 laut1o KAFIF:B1-1 ontoB
30 26 27 29 syl2anc KAFIXBYBzBF:B1-1 ontoB
31 f1ocnvdm F:B1-1 ontoBzBF-1zB
32 30 31 sylancom KAFIXBYBzBF-1zB
33 1 4 3 lautlt KAFIXBF-1zBX<KF-1zFX<KFF-1z
34 26 27 28 32 33 syl13anc KAFIXBYBzBX<KF-1zFX<KFF-1z
35 f1ocnvfv2 F:B1-1 ontoBzBFF-1z=z
36 30 35 sylancom KAFIXBYBzBFF-1z=z
37 36 breq2d KAFIXBYBzBFX<KFF-1zFX<Kz
38 34 37 bitr2d KAFIXBYBzBFX<KzX<KF-1z
39 simplr3 KAFIXBYBzBYB
40 1 4 3 lautlt KAFIF-1zBYBF-1z<KYFF-1z<KFY
41 26 27 32 39 40 syl13anc KAFIXBYBzBF-1z<KYFF-1z<KFY
42 36 breq1d KAFIXBYBzBFF-1z<KFYz<KFY
43 41 42 bitr2d KAFIXBYBzBz<KFYF-1z<KY
44 38 43 anbi12d KAFIXBYBzBFX<Kzz<KFYX<KF-1zF-1z<KY
45 breq2 w=F-1zX<KwX<KF-1z
46 breq1 w=F-1zw<KYF-1z<KY
47 45 46 anbi12d w=F-1zX<Kww<KYX<KF-1zF-1z<KY
48 47 rspcev F-1zBX<KF-1zF-1z<KYwBX<Kww<KY
49 48 ex F-1zBX<KF-1zF-1z<KYwBX<Kww<KY
50 32 49 syl KAFIXBYBzBX<KF-1zF-1z<KYwBX<Kww<KY
51 44 50 sylbid KAFIXBYBzBFX<Kzz<KFYwBX<Kww<KY
52 51 rexlimdva KAFIXBYBzBFX<Kzz<KFYwBX<Kww<KY
53 25 52 impbid KAFIXBYBwBX<Kww<KYzBFX<Kzz<KFY
54 53 notbid KAFIXBYB¬wBX<Kww<KY¬zBFX<Kzz<KFY
55 5 54 anbi12d KAFIXBYBX<KY¬wBX<Kww<KYFX<KFY¬zBFX<Kzz<KFY
56 1 4 2 cvrval KAXBYBXCYX<KY¬wBX<Kww<KY
57 56 3adant3r1 KAFIXBYBXCYX<KY¬wBX<Kww<KY
58 simpl KAFIXBYBKA
59 simpr1 KAFIXBYBFI
60 simpr2 KAFIXBYBXB
61 1 3 lautcl KAFIXBFXB
62 58 59 60 61 syl21anc KAFIXBYBFXB
63 simpr3 KAFIXBYBYB
64 1 3 lautcl KAFIYBFYB
65 58 59 63 64 syl21anc KAFIXBYBFYB
66 1 4 2 cvrval KAFXBFYBFXCFYFX<KFY¬zBFX<Kzz<KFY
67 58 62 65 66 syl3anc KAFIXBYBFXCFYFX<KFY¬zBFX<Kzz<KFY
68 55 57 67 3bitr4d KAFIXBYBXCYFXCFY