Metamath Proof Explorer


Theorem lcdlss

Description: Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lcdlss.h H=LHypK
lcdlss.o O=ocHKW
lcdlss.c C=LCDualKW
lcdlss.s S=LSubSpC
lcdlss.u U=DVecHKW
lcdlss.f F=LFnlU
lcdlss.l L=LKerU
lcdlss.d D=LDualU
lcdlss.t T=LSubSpD
lcdlss.b B=fF|OOLf=Lf
lcdlss.k φKHLWH
Assertion lcdlss φS=T𝒫B

Proof

Step Hyp Ref Expression
1 lcdlss.h H=LHypK
2 lcdlss.o O=ocHKW
3 lcdlss.c C=LCDualKW
4 lcdlss.s S=LSubSpC
5 lcdlss.u U=DVecHKW
6 lcdlss.f F=LFnlU
7 lcdlss.l L=LKerU
8 lcdlss.d D=LDualU
9 lcdlss.t T=LSubSpD
10 lcdlss.b B=fF|OOLf=Lf
11 lcdlss.k φKHLWH
12 1 2 3 5 6 7 8 11 10 lcdval2 φC=D𝑠B
13 12 fveq2d φLSubSpC=LSubSpD𝑠B
14 4 13 eqtrid φS=LSubSpD𝑠B
15 14 eleq2d φuSuLSubSpD𝑠B
16 1 5 11 dvhlmod φULMod
17 8 16 lduallmod φDLMod
18 1 5 2 6 7 8 9 10 11 lclkr φBT
19 eqid D𝑠B=D𝑠B
20 eqid LSubSpD𝑠B=LSubSpD𝑠B
21 19 9 20 lsslss DLModBTuLSubSpD𝑠BuTuB
22 17 18 21 syl2anc φuLSubSpD𝑠BuTuB
23 15 22 bitrd φuSuTuB
24 elin uT𝒫BuTu𝒫B
25 velpw u𝒫BuB
26 25 anbi2i uTu𝒫BuTuB
27 24 26 bitr2i uTuBuT𝒫B
28 23 27 bitrdi φuSuT𝒫B
29 28 eqrdv φS=T𝒫B