Step |
Hyp |
Ref |
Expression |
1 |
|
lcfl6.h |
|
2 |
|
lcfl6.o |
|
3 |
|
lcfl6.u |
|
4 |
|
lcfl6.v |
|
5 |
|
lcfl6.a |
|
6 |
|
lcfl6.t |
|
7 |
|
lcfl6.s |
|
8 |
|
lcfl6.r |
|
9 |
|
lcfl6.z |
|
10 |
|
lcfl6.f |
|
11 |
|
lcfl6.l |
|
12 |
|
lcfl6.c |
|
13 |
|
lcfl6.k |
|
14 |
|
lcfl6.g |
|
15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
lcfl6 |
|
16 |
13
|
ad2antrr |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
simplrl |
|
20 |
|
simplrr |
|
21 |
|
simprl |
|
22 |
|
eqeq1 |
|
23 |
22
|
rexbidv |
|
24 |
23
|
riotabidv |
|
25 |
|
oveq1 |
|
26 |
25
|
oveq2d |
|
27 |
26
|
eqeq2d |
|
28 |
27
|
rexbidv |
|
29 |
|
oveq1 |
|
30 |
29
|
eqeq2d |
|
31 |
30
|
cbvrexvw |
|
32 |
28 31
|
bitrdi |
|
33 |
32
|
cbvriotavw |
|
34 |
24 33
|
eqtrdi |
|
35 |
34
|
cbvmptv |
|
36 |
21 35
|
eqtrdi |
|
37 |
|
simprr |
|
38 |
|
eqeq1 |
|
39 |
38
|
rexbidv |
|
40 |
39
|
riotabidv |
|
41 |
|
oveq1 |
|
42 |
41
|
oveq2d |
|
43 |
42
|
eqeq2d |
|
44 |
43
|
rexbidv |
|
45 |
|
oveq1 |
|
46 |
45
|
eqeq2d |
|
47 |
46
|
cbvrexvw |
|
48 |
44 47
|
bitrdi |
|
49 |
48
|
cbvriotavw |
|
50 |
40 49
|
eqtrdi |
|
51 |
50
|
cbvmptv |
|
52 |
37 51
|
eqtrdi |
|
53 |
36 52
|
eqtr3d |
|
54 |
1 2 3 4 5 6 7 8 9 10 11 16 17 18 19 20 53
|
lcfl7lem |
|
55 |
54
|
ex |
|
56 |
55
|
ralrimivva |
|
57 |
56
|
a1d |
|
58 |
57
|
ancld |
|
59 |
|
sneq |
|
60 |
59
|
fveq2d |
|
61 |
|
oveq2 |
|
62 |
61
|
oveq2d |
|
63 |
62
|
eqeq2d |
|
64 |
60 63
|
rexeqbidv |
|
65 |
64
|
riotabidv |
|
66 |
65
|
mpteq2dv |
|
67 |
66
|
eqeq2d |
|
68 |
67
|
reu4 |
|
69 |
58 68
|
syl6ibr |
|
70 |
|
reurex |
|
71 |
69 70
|
impbid1 |
|
72 |
71
|
orbi2d |
|
73 |
15 72
|
bitrd |
|