Description: Lemma for lcmfdvds and lcmfunsnlem (Induction step part 1). (Contributed by AV, 25-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | lcmfunsnlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |
|
2 | nfra1 | |
|
3 | nfv | |
|
4 | 2 3 | nfan | |
5 | 1 4 | nfan | |
6 | breq2 | |
|
7 | 6 | ralbidv | |
8 | breq2 | |
|
9 | 7 8 | imbi12d | |
10 | 9 | cbvralvw | |
11 | breq2 | |
|
12 | 11 | ralbidv | |
13 | breq2 | |
|
14 | 12 13 | imbi12d | |
15 | 14 | rspcv | |
16 | 15 | adantl | |
17 | sneq | |
|
18 | 17 | uneq2d | |
19 | 18 | fveq2d | |
20 | oveq2 | |
|
21 | 19 20 | eqeq12d | |
22 | 21 | rspcv | |
23 | 22 | 3ad2ant1 | |
24 | 23 | adantr | |
25 | simpr | |
|
26 | lcmfcl | |
|
27 | 26 | nn0zd | |
28 | 27 | 3adant1 | |
29 | 28 | adantr | |
30 | simpl1 | |
|
31 | 25 29 30 | 3jca | |
32 | 31 | adantr | |
33 | 32 | adantr | |
34 | ssun1 | |
|
35 | ssralv | |
|
36 | 34 35 | mp1i | |
37 | 36 | imim1d | |
38 | 37 | imp31 | |
39 | snidg | |
|
40 | 39 | olcd | |
41 | elun | |
|
42 | 40 41 | sylibr | |
43 | breq1 | |
|
44 | 43 | rspcv | |
45 | 42 44 | syl | |
46 | 45 | 3ad2ant1 | |
47 | 46 | adantr | |
48 | 47 | adantr | |
49 | 48 | imp | |
50 | 38 49 | jca | |
51 | lcmdvds | |
|
52 | 33 50 51 | sylc | |
53 | breq1 | |
|
54 | 52 53 | syl5ibrcom | |
55 | 54 | ex | |
56 | 55 | com23 | |
57 | 56 | ex | |
58 | 24 57 | syl5d | |
59 | 16 58 | syld | |
60 | 10 59 | biimtrid | |
61 | 60 | impd | |
62 | 61 | impancom | |
63 | 5 62 | ralrimi | |