Metamath Proof Explorer


Theorem lcmfunsnlem1

Description: Lemma for lcmfdvds and lcmfunsnlem (Induction step part 1). (Contributed by AV, 25-Aug-2020)

Ref Expression
Assertion lcmfunsnlem1 zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkmyzmklcm_yzk

Proof

Step Hyp Ref Expression
1 nfv kzyyFin
2 nfra1 kkmymklcm_yk
3 nfv knlcm_yn=lcm_ylcmn
4 2 3 nfan kkmymklcm_yknlcm_yn=lcm_ylcmn
5 1 4 nfan kzyyFinkmymklcm_yknlcm_yn=lcm_ylcmn
6 breq2 k=lmkml
7 6 ralbidv k=lmymkmyml
8 breq2 k=llcm_yklcm_yl
9 7 8 imbi12d k=lmymklcm_ykmymllcm_yl
10 9 cbvralvw kmymklcm_yklmymllcm_yl
11 breq2 l=kmlmk
12 11 ralbidv l=kmymlmymk
13 breq2 l=klcm_yllcm_yk
14 12 13 imbi12d l=kmymllcm_ylmymklcm_yk
15 14 rspcv klmymllcm_ylmymklcm_yk
16 15 adantl zyyFinklmymllcm_ylmymklcm_yk
17 sneq n=zn=z
18 17 uneq2d n=zyn=yz
19 18 fveq2d n=zlcm_yn=lcm_yz
20 oveq2 n=zlcm_ylcmn=lcm_ylcmz
21 19 20 eqeq12d n=zlcm_yn=lcm_ylcmnlcm_yz=lcm_ylcmz
22 21 rspcv znlcm_yn=lcm_ylcmnlcm_yz=lcm_ylcmz
23 22 3ad2ant1 zyyFinnlcm_yn=lcm_ylcmnlcm_yz=lcm_ylcmz
24 23 adantr zyyFinknlcm_yn=lcm_ylcmnlcm_yz=lcm_ylcmz
25 simpr zyyFinkk
26 lcmfcl yyFinlcm_y0
27 26 nn0zd yyFinlcm_y
28 27 3adant1 zyyFinlcm_y
29 28 adantr zyyFinklcm_y
30 simpl1 zyyFinkz
31 25 29 30 3jca zyyFinkklcm_yz
32 31 adantr zyyFinkmymklcm_ykklcm_yz
33 32 adantr zyyFinkmymklcm_ykmyzmkklcm_yz
34 ssun1 yyz
35 ssralv yyzmyzmkmymk
36 34 35 mp1i zyyFinkmyzmkmymk
37 36 imim1d zyyFinkmymklcm_ykmyzmklcm_yk
38 37 imp31 zyyFinkmymklcm_ykmyzmklcm_yk
39 snidg zzz
40 39 olcd zzyzz
41 elun zyzzyzz
42 40 41 sylibr zzyz
43 breq1 m=zmkzk
44 43 rspcv zyzmyzmkzk
45 42 44 syl zmyzmkzk
46 45 3ad2ant1 zyyFinmyzmkzk
47 46 adantr zyyFinkmyzmkzk
48 47 adantr zyyFinkmymklcm_ykmyzmkzk
49 48 imp zyyFinkmymklcm_ykmyzmkzk
50 38 49 jca zyyFinkmymklcm_ykmyzmklcm_ykzk
51 lcmdvds klcm_yzlcm_ykzklcm_ylcmzk
52 33 50 51 sylc zyyFinkmymklcm_ykmyzmklcm_ylcmzk
53 breq1 lcm_yz=lcm_ylcmzlcm_yzklcm_ylcmzk
54 52 53 syl5ibrcom zyyFinkmymklcm_ykmyzmklcm_yz=lcm_ylcmzlcm_yzk
55 54 ex zyyFinkmymklcm_ykmyzmklcm_yz=lcm_ylcmzlcm_yzk
56 55 com23 zyyFinkmymklcm_yklcm_yz=lcm_ylcmzmyzmklcm_yzk
57 56 ex zyyFinkmymklcm_yklcm_yz=lcm_ylcmzmyzmklcm_yzk
58 24 57 syl5d zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnmyzmklcm_yzk
59 16 58 syld zyyFinklmymllcm_ylnlcm_yn=lcm_ylcmnmyzmklcm_yzk
60 10 59 biimtrid zyyFinkkmymklcm_yknlcm_yn=lcm_ylcmnmyzmklcm_yzk
61 60 impd zyyFinkkmymklcm_yknlcm_yn=lcm_ylcmnmyzmklcm_yzk
62 61 impancom zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkmyzmklcm_yzk
63 5 62 ralrimi zyyFinkmymklcm_yknlcm_yn=lcm_ylcmnkmyzmklcm_yzk