Metamath Proof Explorer


Theorem lcmfval

Description: Value of the _lcm function. ( _lcmZ ) is the least common multiple of the integers contained in the finite subset of integers Z . If at least one of the elements of Z is 0 , the result is defined conventionally as 0 . (Contributed by AV, 21-Apr-2020) (Revised by AV, 16-Sep-2020)

Ref Expression
Assertion lcmfval ZZFinlcm_Z=if0Z0supn|mZmn<

Proof

Step Hyp Ref Expression
1 df-lcmf lcm_=z𝒫if0z0supn|mzmn<
2 eleq2 z=Z0z0Z
3 raleq z=ZmzmnmZmn
4 3 rabbidv z=Zn|mzmn=n|mZmn
5 4 infeq1d z=Zsupn|mzmn<=supn|mZmn<
6 2 5 ifbieq2d z=Zif0z0supn|mzmn<=if0Z0supn|mZmn<
7 zex V
8 7 ssex ZZV
9 elpwg ZVZ𝒫Z
10 8 9 syl ZZ𝒫Z
11 10 ibir ZZ𝒫
12 11 adantr ZZFinZ𝒫
13 0nn0 00
14 13 a1i ZZFin0Z00
15 df-nel 0Z¬0Z
16 ssrab2 n|mZmn
17 nnssnn0 0
18 16 17 sstri n|mZmn0
19 nnuz =1
20 16 19 sseqtri n|mZmn1
21 fissn0dvdsn0 ZZFin0Zn|mZmn
22 21 3expa ZZFin0Zn|mZmn
23 infssuzcl n|mZmn1n|mZmnsupn|mZmn<n|mZmn
24 20 22 23 sylancr ZZFin0Zsupn|mZmn<n|mZmn
25 18 24 sselid ZZFin0Zsupn|mZmn<0
26 15 25 sylan2br ZZFin¬0Zsupn|mZmn<0
27 14 26 ifclda ZZFinif0Z0supn|mZmn<0
28 1 6 12 27 fvmptd3 ZZFinlcm_Z=if0Z0supn|mZmn<