Metamath Proof Explorer


Theorem lcmineqlem4

Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. F is found in lcmineqlem6 . (Contributed by metakunt, 10-May-2024)

Ref Expression
Hypotheses lcmineqlem4.1 φN
lcmineqlem4.2 φM
lcmineqlem4.3 φMN
lcmineqlem4.4 φK0NM
Assertion lcmineqlem4 φlcm_1NM+K

Proof

Step Hyp Ref Expression
1 lcmineqlem4.1 φN
2 lcmineqlem4.2 φM
3 lcmineqlem4.3 φMN
4 lcmineqlem4.4 φK0NM
5 breq1 k=M+Kklcm_1NM+Klcm_1N
6 fzssz 1N
7 fzfi 1NFin
8 6 7 pm3.2i 1N1NFin
9 8 a1i φ1N1NFin
10 dvdslcmf 1N1NFink1Nklcm_1N
11 9 10 syl φk1Nklcm_1N
12 1zzd φ1
13 2 nnzd φM
14 0zd φ0
15 1 nnzd φN
16 15 13 zsubcld φNM
17 2 nnred φM
18 17 leidd φMM
19 fznn MM1MMMM
20 13 19 syl φM1MMMM
21 2 18 20 mpbir2and φM1M
22 1cnd φ1
23 22 addridd φ1+0=1
24 23 eqcomd φ1=1+0
25 1 nncnd φN
26 2 nncnd φM
27 25 26 npcand φN-M+M=N
28 eqcom N-M+M=NN=N-M+M
29 28 a1i φN-M+M=NN=N-M+M
30 25 26 jca φNM
31 subcl NMNM
32 30 31 syl φNM
33 32 26 jca φNMM
34 addcom NMMN-M+M=M+N-M
35 33 34 syl φN-M+M=M+N-M
36 eqeq2 N-M+M=M+N-MN=N-M+MN=M+N-M
37 35 36 syl φN=N-M+MN=M+N-M
38 29 37 bitrd φN-M+M=NN=M+N-M
39 38 pm5.74i φN-M+M=NφN=M+N-M
40 27 39 mpbi φN=M+N-M
41 12 13 14 16 21 4 24 40 fzadd2d φM+K1N
42 5 11 41 rspcdva φM+Klcm_1N
43 fz1ssnn 1N
44 43 7 pm3.2i 1N1NFin
45 lcmfnncl 1N1NFinlcm_1N
46 44 45 ax-mp lcm_1N
47 46 a1i φlcm_1N
48 elfznn0 K0NMK0
49 4 48 syl φK0
50 nnnn0addcl MK0M+K
51 2 49 50 syl2anc φM+K
52 nndivdvds lcm_1NM+KM+Klcm_1Nlcm_1NM+K
53 47 51 52 syl2anc φM+Klcm_1Nlcm_1NM+K
54 42 53 mpbid φlcm_1NM+K
55 54 nnzd φlcm_1NM+K