Metamath Proof Explorer


Theorem ledivge1le

Description: If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021)

Ref Expression
Assertion ledivge1le AB+C+1CABACB

Proof

Step Hyp Ref Expression
1 divle1le AB+AB1AB
2 1 adantr AB+C+AB1AB
3 rerpdivcl AB+AB
4 3 adantr AB+C+AB
5 1red AB+C+1
6 rpre C+C
7 6 adantl AB+C+C
8 letr AB1CAB11CABC
9 4 5 7 8 syl3anc AB+C+AB11CABC
10 9 expd AB+C+AB11CABC
11 2 10 sylbird AB+C+AB1CABC
12 11 com23 AB+C+1CABABC
13 12 expimpd AB+C+1CABABC
14 13 ex AB+C+1CABABC
15 14 3imp1 AB+C+1CABABC
16 simp1 AB+C+1CA
17 6 adantr C+1CC
18 0lt1 0<1
19 0red C+0
20 1red C+1
21 ltletr 01C0<11C0<C
22 19 20 6 21 syl3anc C+0<11C0<C
23 18 22 mpani C+1C0<C
24 23 imp C+1C0<C
25 17 24 jca C+1CC0<C
26 25 3ad2ant3 AB+C+1CC0<C
27 rpregt0 B+B0<B
28 27 3ad2ant2 AB+C+1CB0<B
29 16 26 28 3jca AB+C+1CAC0<CB0<B
30 29 adantr AB+C+1CABAC0<CB0<B
31 lediv23 AC0<CB0<BACBABC
32 30 31 syl AB+C+1CABACBABC
33 15 32 mpbird AB+C+1CABACB
34 33 ex AB+C+1CABACB